THE PARALLAXES OF FIFTY STARS (SECOND LIST) DETERMINED AT SPROUL OBSERVATORY.

By JOHN A. MILLER, WITH THE COÖPERATION OF

JOHN H. PITMAN and HANNAH B. STEELE.

(Read December 5, 1919.)

I have given in the following pages the data of observation, the data of reduction and the reductions necessary to determine the parallaxes of fifty stars. It seems unnecessary to describe either the instruments or the methods employed in the work, further than to say that the intsruments used are the same that were used in determining the parallaxes of the first list published by the observatory in 1917 (Sproul Observatory Publication No. 4). The fields are photographed with a 24 -inch visually corrected refracting telescope on Instantaneous Isochromatic plates. A ray filter which cuts off the violet and the red rays is placed very near the plate. These plates are measured and reduced as described in the publication referred to. The scale on the plate is $4^{\prime \prime} .685$ to the quarter millimeter, the value of one turn of the screw on the measuring engine.

These results have been obtained through the efforts of several persons. The work has been done according to plans of the writer. Those participating in the work are: Professor John H. Pitman, Miss Hannah B. Steele, Dr. Samuel G. Barton, Reverend Walter A. Matos, Miss Marie S. Bender, and Miss Caroline H. Smedley. No one of us has been free to devote his entire time to it. I believe, in the body of the text, I have given specific credit to each for the part of the work he has performed. The reductions and many of the measures, as well as the routine work of marking the plates and keeping the records was performed by Miss Steele until 1916 when she went to Yerkes Observatory. Miss Bender did this work the following year and Miss Smedley, since the summer of 1917, has given much of her energies to the same work.

Some of the fields of comparison stars have been selected in ac-
cordance with the scheme described in Sproul Publication No. 4, (p. ro $e t$ seq.). Other fields have been selected in the usual way, i.e., the comparison stars were selected because of their location and brightness, the ideal being in every case to select stars of approximately the same brightness and to reduce the parallax star to the same magnitude by the occulting disc. In the final table of this paper, which contains a summary of the preceding results, I have marked with an asterisk those stars whose comparison fields were selected by the first method. I propose a little later to discuss more fully our experience with this method. In the detailed results which follow there is given for each star its B.D. number together with some other ordinarily used designations; its position for the epoch of 1900; its magnitude; its proper motion; and its spectrum. The magnitude and spectrum are taken if possible from the Annals of the Harvard College Observatory, Volume 50. The proper motions are taken, with few exceptions from Boss' Preliminary General Catalogue, or from the Cincinnati publications.

Two tables are given in connection with each star. The first contains the necessary observational data, and the quantities needed for reduction. The initials in columns 2 and 9, have the following signification: B. denotes Barton; Be., Bender; M., Miller ; Ma., Matos; P., Pitman ; S., Miss Steele; Sm., Miss Smedley. T., in column 4, is the time of observation given in 100 days from the mean date of the series ; m ., in column 6, is the "solution" of the plate given in quar-ter-millimeters; p., in column 7 , is the weight of the plate assigned by the person who measures it. The second table contains the data for the position of the comparison stars measured in equatorial coordinates, the diameter of the stars in quarter-millimeters, and their B.D. numbers. Following this table are the normal equations and their solutions. The quantity μ in these equations is the proper motion given in seconds of arc per hundred days. The quantity, π, is the relative parallax.

An appropriation made from the income of a fund given by James C. Watson for Astronomical Research, has been made to me by the National Academy of Sciences for three successive years. These appropriations have been used to aid in the measurements and reduction of these plates. It is a pleasure to acknowledge these generous contributions from the Academy.

No. I. B.D. -4°.62. Ho. $212=13$ Ceti. ($0^{\mathrm{h}} 3 \mathrm{I}^{\mathrm{m}} . \mathrm{I} ;-4^{\circ} 9^{\prime}$.) Mag. 5.24. $\mu=0^{3} .0272$; - 0 ".018. Spectrum F.
Ho. 212 is a triple star, the measures below refer to the close pair A B, which is a binary system with a period of 6.88 years. The combined image of the pair is sensibly round, and in the measures this image was bisected. It was measured in right ascension. Russell found for this star a hypothetical parallax of $+\mathrm{o}^{\prime \prime} .039$. The brighter image, A, has been found to be a spectroscopic binary.

	Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Nov	17, 1915.	+o 8	P.	-6.25	-0.66	+0.123	1.0	$+0.005$	5 P.
Dec	4, 1915.	12	Ma.	6.08	.8I	. 125	. 5	. 006	6 P.
Nov	19, 1916.	+o 25	M.	-2.57	-0.69	. 237	. 7	-0.014	4
Dec	10, 1916.	042	M.	2.36	. 85	. 232	1.0	. 006	6 P.
Aug	19, 1917.	+0 15	P.	+0.16	+0.62	. 309	1.0	-0.003	3 P.
Aug	25, 1917.	0 50	M.	0.22	. 54	. 316	. 6	. 008	8 P
Aug	27, 1917.	-1 15	P.	0.24	. 52	. 304	1.0	+0.003	3 P
Aug	27, 1917...	030	P	0.24	. 52	. 303	. 7	. 004	4 P
Nov	5, 1917..	-0 12	M.	+0.94	-0.52	.311	. 5	+0.004	4 P
Nov	25, 1917...	+o 45	M.	1.14	. 75	. 322	. 9	-0.005	5 P
Dec	22, 1917...		Ma.	1.41	. 89	. 316	. 5	+0.007	7 P
Jan.	I, 1918...	110	M.	1.51	. 90	. 318	. 5	. 008	8 P.
Aug	14, 1918..	+o 15	Ma.	+3.76	+0.68	. 400	. 9	0.000	P.
Aug	22, 1918...	010	D	3.84	. 58	. 393	. 5	+0.008	8 P.
Aug	22, 1918...	I 5	D	3.84	. 58	. 406	. 8	-0.005	5 P .

Normal Equations:

$$
\begin{aligned}
+11.10000 c-1.4170 \mu-1.0340 \pi & =+3.2417 \\
+103.5299+13.0930 & =+2.3872 \\
+5.1344 & =+.0841 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .296 . \\
& \mu=+\mathrm{o}^{\prime \prime} .12 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .002 . \\
& \pi=+\mathrm{o}^{\prime \prime} .048 \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.oI 9 .

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
2	+138.3	-97.7	+0.326	0.47	
4	263.4	51.9	.197	0.40	
7	-71.1	+181.0	.019	0.45	
10	149.7	61.5	.234	0.37	
12	271.0	108.3	.224	0.50	
π	0.0	0.0		0.67	$-4^{\circ} .62$

No. 2. B.D. $37^{\circ} \cdot 175 . ~ \mu$ Andromedae. ($0^{\mathrm{h}} 5 \mathrm{I}^{\mathrm{m}} .2 ;+37^{\circ} 57^{\prime}$.) Mag. 3.94. $\mu=0^{8} .0128 ;+0^{\prime \prime} .027$. Spectrum A_{2}.

This is one of the first type stars with large proper motion. Slocum obtained $o^{\prime \prime} .005 \pm 0^{\prime \prime} .007$ for its parallax. The measures were made in longitude.

Date.

Dec. 7, 1912...
Dec. 9, 1912... to 4 B. 7.28 .751 . 066 . 8 - 0.002 S.
Aug. 21, 1914... +o 20 P. $-\mathrm{T} .08+0.870+0.127$. $8-0.002 \mathrm{~S}$.
Sept. 5, 1914... о то P. 0.93 .713 .141 1.0 . 016 S.
Nov. 20, 1914... -04 P P. $-0.17-0.491 \quad+0.121 \quad .9+0.003$ S.
Nov. 22, 1914... 045 M. 0.15 . 522 . $128 \quad .9-0.005$ S.
Aug. 17, 1915... -49 P. $+2.53+0.905+0.136 \quad .8+0.018 \mathrm{~S}$.
Aug. 22, $1915 \ldots$ to 4 P. 2.58 . 863 . 155 1.0 0.000 S .
Aug. 23, 1915... -039 P. 2.59. . 855 . 157 1.0 -0.002 S.
Aug. 25, 1915... 040 P. 2.61 . 836 . 152 1.0 +0.003 S.
Sept. 2, 1915... 038 P. 2.69 .751 . 150 1. 0 . 005 S.
Dec. 31, 1915... $-0 \quad 7$ P. $+3.89-0.931+0.155 \quad .9-0.002 \mathrm{~S}$.
Normal Equations:

$$
\begin{aligned}
+10.900 c+2.249 \mu+2.505 \pi & =+1.425 \\
+133.027+14.570 & =+1.459 . \\
\cdot+6.624 & =+0.482 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=+o^{\prime \prime} .128 . \\
& \mu=+o^{\prime \prime} .03^{\prime} \pm o^{\prime \prime} .003 . \\
& \pi=+o^{\prime \prime} .03^{2} \pm 0^{\prime \prime} .013 .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} .028$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
3	+222.8	+63.6	+0.199	0.61	$+37^{\circ} .179$
5	90.6	-53.3	.349	0.36	
7	-54.4	+58.2	.154	0.77	$+37^{\circ} .174$
9	259.0	-68.6	.301	0.74	$+37^{\circ} .168$
π	10.5	17.4		1.01	$+37^{\circ} .175$

No. 3. B.D. $+46^{\circ}$.243. O§ 21. $\quad\left(0^{h} 57^{m} \cdot 3 ;+46^{\circ} 50^{\prime}\right.$.)
Mag. 6.36. $\mu=+\mathrm{o}^{\prime \prime} .068$ in $104^{\circ} .5$. Spectrum F.
This is a close double star, which is, apparently, in rapid orbital motion. The measures are in longitude. No parallax of this star has been published.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	100 Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v. ured by.

Dec. $15,1915 \ldots$ to 2 P. $-3.37-0.736+0.083$. $7+0.001 \mathrm{Be}$. Dec. 22, 1915... $0 \quad 5 \quad$ P. 3.30 .8II 078 . 8 . 006 Be .
A.ug. 19, 1916... -037 P. $-0.89+0.934$.103 1.0 -0.008 Be.

Aug. 25, 1916... to 5 Ma . 0.83 . 889 . 092 . 8 +0.003 Sm. Sept. II, 1916... -36 P. 0.66 . 714 . 095 1.0 . 000 Be .

Dec. 17, 1916... -0 6 M. $+0.31-0.767$. $104 \quad .9-0.008 \mathrm{Be}$.
Dec. 23, 1916... $0 \quad 2 \mathrm{Ma}$. 0.37 . 828 . 100 1.0 004 Sm . Jan. 6, 1917... $0 \quad 3 \mathrm{Ma}$ 0.51 . 933 .091 $9+0.005 \mathrm{Be}$.

Aug. 4, 1917... -0 24 M. $+2.61+1.004$. 099 . 8 +0.007 Sm.
Aug. 5, 1917... 134 P. 2.62 1.902 . 102 . 9 . 004 Sm.
Aug. 10, 1917... 045 Ma . 2.67 0.985 . 108 I.0 -0.002 Sm.
Normal Equations:

$$
\begin{aligned}
+9.8000 c+1.0110 \mu+1.5272 \pi & =+0.9466 \\
+37.6547+8.1249 & =+0.2262 \\
+7.5985 & =+0.1830
\end{aligned}
$$

Solutions:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .096 . \\
& \mu=+\mathrm{o}^{\prime \prime} .015 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .007 \pm \mathrm{o}^{\prime \prime} .008 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{OI} 8$.

Comparison Stars.

No. 5	$\begin{gathered} x . \\ +63.4 \end{gathered}$	$\begin{gathered} Y . \\ -262.3 \end{gathered}$	Dependence. $+0.283$	$\begin{gathered} \text { Diameter. } \\ 0.47 \end{gathered}$	B. D. No.
8	203.5	11.2	. 246	0.55	$+46^{\circ} .249$
15	-244.6	+ 90.6	. 249	0.56	$+46^{\circ} .231$
18	31.9	246.0	. 222	0.68	
π	0.0	0.0		0.56	$+46^{\circ} .243$

No. 4. B.D. $+54^{\circ} .236$. © Cassiopeia. ($\mathrm{I}^{\mathrm{h}} 5^{\mathrm{m}} .0 ;+54^{\circ} 37^{\prime}$.)

The measures were in longitude. This is a first type star with large proper motion. Jacoby gives a parallax of $0^{\prime \prime} .234 \pm 0^{\prime \prime} .067$ for this star.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., τ.	Measured by
Nov.	30, 1912...	-0 59	B.	-8.76	-0.43I	-0.014	1.0	0.000	0 S.
Dec.	24, 1912.	021	B.	8.52	. 755	. 013	. 7	-0.002	2 S
Aug.	14, 1915.	-02	P.	+1.11	+1.000	-0.055	. 9	+0.001	S.
Aug.	17, 1915...	022	P.	1.14	0.991	.05I	. 9	-0.004	4 S .
Aug.	18, 1915..	- 18	P.	1.15	. 987	. 052	. 7	. 003	3 S.
Aug.	23, 1915...	+o 20	P.	1.20	. 964	. 055	. 8	00	S.
Aug.	25, 1915..	-0 14	P.	1.22	. 952	.051	. 8	. 004	4 S.
Sept.	2, 1915..	04	P.	I. 30	. 896	. 059	. 8	+0.004	4 S.
Dec.	30, 1915...	+o 7	S.	+2.49	-0.81I	-0.06I	. 8	+0.002	S.
Dec.	31, 1915...	O 12	P.	2.50	. 822	. 060	. 8	. 001	S.
Jan.	4, 1916...	016	M.	2.54	. 858	. 056	. 6	-0.002	2 S .
Jan.	7, 1916...	06	S.	2.57	. 882	. 054	.7	. 004	4 S.

Normal Equations:

$$
\begin{aligned}
9.500 c-1.603 \mu+1.334 \pi & =-0.456 \\
+152.905+7.726 & =-0.539 \\
+7.214 & =-0.100 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=-o^{\prime \prime} .049 . \\
& \mu=-0^{\prime \prime} .019 \pm 0^{\prime \prime} .001 . \\
& \pi=-0^{\prime \prime} .003 \pm 0^{\prime \prime} .003 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{om}^{2}$.

Comparison Stars.

| No. | X | | | Dependence. | Diameter. |
| ---: | ---: | ---: | :---: | :---: | :---: |\quad B. D. No.

No. 5. B.D. $+49^{\circ} \cdot 444$. ϕ Persei. ($\mathrm{I}^{\mathrm{h}} 37^{\mathrm{m}} \cdot 4 ;+50^{\circ} \quad 1 \mathrm{I}^{\prime}$.)
Mag. 4.19. $\mu=+0^{s} .0029 ;-0^{\prime \prime} .018$. Spectrum Bp.
This star is a spectroscopic binary. The measures are in right ascension. No parallax of this star has been published.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days, T.	Parallax Factor, P.	Solution, m.	Wt., $p .$	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
ov	17, 1915	-0 20	P.	-3.30	-0.43	-0.054	1.0	+0.009	Be.
Nov	26, 1915	+o 8	P.	3.21	. 56	.04I	. 9	-0.005	Be.
Nov	28, 1915.	-0 27	S.	3.19	. 58	. 040	. 8	. 006	Sm.
Aug	19, 1916.	-0 38	P.	-0.54	+0.81	. 043	. 9	-0.006	6 Be .
Sep	9, 1916..	023	P.	0.33	. 58	. 052	. 9	+0.002	Be.
Sep	II, 1916.	- 28	P.	0.31	. 57	. 055	. 6	. 004	4
Dec	10, 1916...	+0 12	M.	+0.59	-0.72	.061	. 8	+0.001	Be.
Dec	14, 1916..	-0 26	M.	0.63	. 77	. 063	. 8	. 003	Be.
Dec	16, 1916.	+o 9	Ma.	0.65	. 78	. 052	. 5	-0.008	Sm
Aug	5, 1917...	-I 32	P.	$+2.97$	+0.91	. 065	. 6	+0.004	Sm.
Aug	12, 1917...	1	P.	3.04	. 87	. 062	1.0	.001	Sm.
Aug	13, 1917.	1 I 3	P.	3.05	. 86	. 058	I. 0	-0.003	Sm.

Normal Equations:

$$
\begin{aligned}
+9.8000 c-0.5370 \mu+0.8890 \pi & =-0.5256 . \\
+53.3666+9.7531 & =-0.1 \mathrm{I} 34 . \\
+5.0110 & =-0.0599 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .054 . \\
& \mu=-\mathrm{o}^{\prime \prime} .016 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .021 \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{OI} 7$.

Comparison Stars.

| No. | X | | Y. | Dependence. | Diameter. |
| ---: | ---: | ---: | :---: | :---: | :---: |\quad B. D. No.

No. 6. B.D. $+\mathrm{I}^{\circ}$.347. $\Sigma \mathrm{\Sigma}$ 186. ($\mathrm{I}^{\mathrm{h}} 5 \mathrm{~m}^{\mathrm{m}} .7 ;+\mathrm{I}^{\circ} 2 \mathrm{I}^{\prime}$.)
Mag. 6.18. $\mu=+0^{3} .0105 ;+o^{\prime \prime}$.182. Spectrum F.
This is a binary of long period. The combined image of the two components was bisected in making the measures. The image is sensibly round. The measures are in longitude. Russell publishes a hypothetical parallax of $\mathrm{o}^{\prime \prime} .025$ for this star.

	Hour		Time in Parallax			
Date.	Angle.	Obs.	100 Days, Factor,	Solution,	Wt.,	Res., Meas-
	h. m.	T.	P.	m.	p.	v. ured by.

Dec. 26, $1915 \ldots$ to 46 M. $-2.80-0.912-0.027$. $9-0.001 \mathrm{Sm}$.
Dec. 3I, 1915... $0 \quad 5 \quad$ P. $2.75 \quad .940 \quad .024 \quad .5 \quad .004 \mathrm{Sm}$.
Jan. 4, 1916... 0 21 M. 2.7 I . 982 . $033 \quad .6+0.005 \mathrm{Be}$.
Aug. I3, 1916... -046 P. $-0.49+.917+0.014 \quad .6+0.001 \mathrm{Be}$.
Sept. 3, 1916... to 42 M. 0.28 . 709 . 014 1.0 . 002 Be .
Sept. 16, 1916... 034 M. 0.15 . 532 . $023 \quad .5-0.007 \mathrm{Sm}$
Dec. 10, $1916 .$. to 52 M. $+0.70-.78 \mathrm{I}+0.011 \quad .9+0.003 \mathrm{Be}$.
Dec. 19, 1916... 0 58 M. +0.79 . 865 . $022 \quad .5-0.007 \mathrm{Sm}$.
Jan. 16, 1917... $-022 \mathrm{M} .+1.07$. 984 .016 1.0 +0.001 Be .
Aug. 25, 1917... -042 M. $+3.28+.812+0.064$ 1.0 -0.005 Sm .
Aug. 27, 1917... 0 18 P. 3.30 . 792 . 054 1.0 +0.005 Sm
Normal Equations:

$$
\begin{aligned}
+8.5000 c+2.5050 \mu-0.8702 \pi & =+0.1327 \\
+39.0238+8.0698 & =+0.5658 \\
+6.0956 & =+0.1384
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=+o^{\prime \prime} .013 \\
& \mu=+o^{\prime \prime} .055 \pm o^{\prime \prime} .003 \\
& \pi=+o^{\prime \prime} .042 \pm o^{\prime \prime} .006
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.oI3.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
I	-I 90.6	-I 83.9	+0.328	0.52	$+0^{\circ} .308$
4	+210.5	150.4	.144	0.47	$+0^{\circ} .314$
7	$I 1.7$	+221.7	.307	$0.6 I$	$+I^{\circ} .348$
8	129.8	62.3	.221	0.41	$+I^{\circ} .350$
π	0.0	0.0		0.82	$+I^{\circ} .347$

No. 7. B.D. $+4 \mathrm{I}^{\circ}$.395. $\gamma^{1}(\mathrm{~A})$ and $\gamma^{2}(\mathrm{BC})$ Andromedae.

$$
\begin{aligned}
& \left(\mathrm{I}^{\mathrm{h}} 57^{\mathrm{m}} .8 ;+4 \mathrm{I}^{\circ}{\left.5 \mathrm{I}^{\prime} .\right)} \text { Mag. } 2.28-5.08\right. \\
& \mu=\left\{\begin{array}{rr}
+0^{\mathrm{s}} .0042 ;-\mathrm{o}^{\prime \prime} .052 . & \text { Spectrum } \mathrm{K}_{\mathrm{p}} .
\end{array}\right.
\end{aligned}
$$

The measures are in longitude. BC is a binary with a period of about 55 years. Flint found the parallax of γ^{1} to be $-\mathrm{o}^{\prime \prime} . \mathrm{OI} 5 \pm$ $0^{\prime \prime} .027$, Chase, $\mathrm{o}^{\prime \prime} .000 \pm \mathrm{o}^{\prime \prime} .009$, Russell (Hypothetical), $+\mathrm{o}^{\prime \prime} .015$. The same comparison field is used for γ^{1} and for γ^{2}.

Table and Solutions for γ^{1} (A) Andromedae.

	Date.	$\begin{aligned} & \text { Hour } \\ & \text { Angle. } \\ & \text { h. m. } \end{aligned}$	Obs.	Time in 100 Days, T.	$\begin{aligned} & \text { Parallax } \\ & \text { Factor, } \\ & P . \end{aligned}$	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & \text { por } \end{aligned}$	$\begin{aligned} & \text { Res., } \\ & \text { v., } \end{aligned}$	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
ug.	13, 1916...	- 20	P.	-2.20	+1.002	+0.192	. 8	-0.0	4
ug.	17, 1916...		P.	2.16	0.990	. 200	. 9	. 0 !	2 P
pt.	17, 1916...	45	P.	1.85	746	. 190	. 9	. 00	2 P
Sept.	17, 1916...	022	P.	1. 85	746	. 17	. 9	+0.01	2
Sept.	20, 1916.		a.	1.82	709	. 170	1.0	. 01	8 P
Dec.	19, 1916...	- 0	M.	-0.92	-0.692	. 19	. 7	-0.00	8
Jan.	2, 1917...	+o	M.	0.78	. 843	. 196	. 0	. 01	- P.
Jan.	6, 1917...	-0	Ma.	0.74	. 876	. 176	. 6	+0.01	o
Jan.	8, 1917.	022	P.	0.72	. 892	. 188	7	-0.00	2 P .
Aug.	5, 1917...	-1	P.	+1.37	+1.014	. 179	. 5	+0.02	4
Aug.	12, 1917...	0 46	P.	1.44	. 005	226	. 8	-0.02	3
Aug.	26, 1917...	57	P.	1.58	0.946	. 206	. 9	. 00	2
Dec.	30, 1917...	+o	M.	+2.84	-0.812	. 200	1.0	+0.00	T
Jan.	5, 1918...	-0 12	Ma .	2.90	. 866	. 207	. 5	-0.00	6
Jan.	13, 1918...	+o 1	M.	2.98	. 924	. 190	. 8	+0.01	1

Normal Equations:

$$
\begin{aligned}
+12.0000 c-1.2930 \mu+1.4452 \pi & =+2.3132 \\
+43.6553-8.0880 & =-0.0992 \\
+9.0978 & =+0.2846
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .193 . \\
& \mu=+\mathrm{o}^{\prime \prime} .020 \pm \mathrm{o}^{\prime \prime} .006 . \\
& \pi=+\mathrm{o}^{\prime \prime} .02 \mathrm{o} \pm \mathrm{o}^{\prime \prime} .014 .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} .037$.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
3	-71.6	-141.0	+0.259	0.56	
6	+75.3	+183.1	.249	0.64	$+41^{\circ} .399$
10	163.6	-110.1	.056	0.44	
12	-92.9	36.3	.319	0.4 I	
14	+175.8	+74.6	.117	0.42	
γ^{1}	0.0	0.0		1.01	$+41^{\circ} .395$

Table and Solutions for $\boldsymbol{\gamma}^{2}$ (B) Andromedae.

Hour					Time in Parallax
Date.	Angle. Obs. Ioo Days, Factor, Solution, Wt., Res., Meas-				

$$
\text { h. m. } \quad T . \quad P . \quad m . \quad p . \quad v \text {. ured by. }
$$

Aug. 13, 1916... -020 P. $-2.11+1.002-0.048$ 1.0 -0.007 P. Aug. 17, 1916... $0 \quad 0 \quad$ P. 2.07 0.990 $052 \quad .9 \quad .003$ P.
Sept. 17, 1916... 045 P. 1.76 .746 . 053 . 5 .001 P.
Sept. 17, 1916... 022 P. 1.76 .746 . $066 \quad .9$ +0.012 P.
Sept. 20, 1916... 0 o Ma. 1.73 . 709 . 066 . 8 . 012 P.

Dec. 19, 1916... $0 \quad$ o M. $0.83-0.692 \quad .054 \quad .8 \quad 0.000 \quad$ P.
Jan. 2, 1917... to 6 M. 0.69 . 843 . $046 \quad .7-0.008$ P.
Jan. 6, 1917... -0 8 Ma. 0.65 . 876 . 050 . 8 . 004 P.

Jan. 8, 1917... 022 P. 0.63 . 892 . $054 \quad .700 .000 \quad$ P.
Aug. 12, 1917... $-046 \mathrm{P} .+1.53+1.005 \quad .044 \quad .9-0.003 \mathrm{P}$.
Aug. 26, 1917... 057 P. 1.67 0.946 041 . $7 \quad .006$ P.
Dec. $30,1917 .$. +o 4 M. $2.93-0.812 \quad .055 \quad .8+0.000$ P.
Jan. 5, 1918... -0 12 Ma. 2.99 . 866 . 042 . 5 -0.004 P. Jan. 13, 1918... to I M. 3.07 . 924 . 047 . 8 +o.00I P.

Normal Equations:

$$
\begin{aligned}
+10.8000 c-1.0880 \mu+0.7806 \pi & =-0.5576 \\
+39.4766-8.0400 & =+0.1329 . \\
+8.2397 & =-0.0484
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .05 \mathrm{I} \\
& \mu=+\mathrm{o}^{\prime \prime} .010 \pm \mathrm{o}^{\prime \prime} .004 \\
& \pi=+\mathrm{o}^{\prime \prime} .005 \pm \mathrm{o}^{\prime \prime} .008
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$. o2I .

Comparison Stars.

| No. | | | Y. | Dependence. | Diameter. |
| ---: | ---: | ---: | ---: | ---: | ---: |\quad B. D. No.

No. 8. B.D. $+67^{\circ}$.191. Bradley 3227. ($2^{\mathrm{h}} 7^{\mathrm{m}} \cdot 5 ;+67^{\circ} \quad 13^{\prime}$.)
Mag. 7.8. $\quad \mu=+0^{\mathrm{s} .0902 ;-0^{\prime \prime} .299 . ~ S p e c t r u m ~ K . ~}$
The measures of this star were made in longitude. Smith-Elkin found (Heliometer) a parallax for this star of $+\mathrm{o}^{\prime \prime} .09 \pm \mathrm{o}^{\prime \prime} .04 \mathrm{I}$. Adams found a parallax for it (Spectroscopic) of $+\mathrm{o}^{\prime \prime} .044$.

	Hour		Time in Parallax			
Date.	Angle.	Obs.	Ioo Days, Factor,	Solution,	Wt.,	Res., Meas-
	h. m.		T.	P.	m.	p.

Sept. 10, $1915 \ldots+027 \mathrm{Ma} .4 .33+0.957-0.193 \quad .9-0.004 \mathrm{Be}$.
Sept. 13, 1915... 016 P. 4.30 . 939 . 198 1.0 +o.002 Be.
Sept. 15, 1915... 052 P. 4.28 .925 . 95 . 9 -0.001 Be.
Sept. 16, 1915... $0 \quad 2$ M. 4.27 . 918 . 208 1.0 +0.012 Be.
Dec. 30, 1915..: -0 10 S. $-3.22-0.615 \quad .184 \quad 1.0-0.008$ Be.
Sept. 17, 1916... +o 1о P. $-0.60+0.905$. 112 . $6-0.011$ Be.
Oct. 7, 1916... 034 M. 0.40 .701 . 126 . 5 +0.005 Bc.
Oct. 10, 1916... -014 P. 0.37 . 663 . 124 . 9 .003 Be.
Jan. 8, 1917... +04 P. $+0.53-0.739$.II6 . $7-0.002$ Be.
Jan. 12, 1917... -0 8 P. 0.57 .782 . 128 1.0 +0.010 Be.
Jan. 12, 1917... to 19 P. 0.57 . 782 . $103 \quad .8-0.015 \mathrm{Be}$.
Jan. 16, 1917... 0 12 M. 0.61 .824 . 106 . 5 . 012 Be.
Jan. 30, 1917... 0 36 P. 0.75 . 932 . 126 1. $0+0.010$ Be.
Sept. 12, 1917... to $2 \mathrm{Ma} .+3.00+0.942$. 044 . 7 -0.006 Sm.
Sept. 19, 1917... 022 Ma. 3.07 . 892 . 047 . 5 . 003 Sm.
Jan. 5, 1918... +o $13 \mathrm{Ma} .+4.15-0.700$. 059.9 +0.013 Sm.
Jan. 10, 1918... $0 \quad 2$ M. 4.20 . 759 . 046 . 9 . 001 Sm.
Jan. 20, 1918... -0 I M. 4.30 . 859 . 037 .9 - . 007 Sm.
Normal Equations:

$$
\begin{aligned}
+14.7000 c-2.9600 \mu+0.1763 \pi & =-1.8337 \\
+141.4308-21.4438 & =+2.9503 \\
+10.1634 & =-0.3384
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .12 \mathrm{I} . \\
& \mu=+\mathrm{o}^{\prime \prime} .094 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .05^{2} \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e. unit weigth, $\pm 0^{\prime \prime} .026$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
1	-239.9	+253.7	+0.185	0.62	$+67^{\circ} .187$
6	+205.0	37.8	.202	0.48	
12	5.6	-163.1	.486	0.8 I	$+66^{\circ} .192$
15	19.8	+193.4	.127	0.50	
π	0.0	0.0		0.77	$+67^{\circ} .191$

No. 9. B.D. $+24^{\circ} \cdot 375-6$. Bradley $360-1$. ($2^{\text {h }} 3 \mathrm{I}^{\mathrm{m}} .2 ;+24^{\circ} 12^{\prime} .8$.)
Mag. 7.3-6.9 $\quad \mu=\left\{\begin{array}{l}+0^{s} .0111 ;-0^{\prime \prime} .009 . \\ +0^{s} .0102 ; \text { - } 0^{\prime \prime} .010 .\end{array}\right.$ Spectrum $\mathrm{F}, \mathrm{F}_{5}$.
The measures are in longitude. The components have a common proper motion. Other published parallaxes are

Von Maanen, (photographic), $+\mathrm{o}^{\prime \prime} .008 \pm \mathrm{o}^{\prime \prime} .015$, (360).

$$
+\mathrm{o}^{\prime \prime} .028 \pm \mathrm{o}^{\prime \prime} .014, \quad(.36 \text { г })
$$

Adams, (spectroscopic), $+\mathrm{o}^{\prime \prime} . \mathrm{oI} 8$, (360).

$$
\begin{equation*}
+\mathrm{o}^{\prime \prime} .028 \tag{361}
\end{equation*}
$$

The same comparison field was used for both components.

Normal Equations:

$$
\begin{aligned}
+10.4000 c+1.3390 \mu-1.5384 \pi & =-0.8766 \\
+38.1003-4.8455 & =+0.083 \mathrm{I} . \\
+7.0229 & =+0.1458
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .084 . \\
& \mu=+\mathrm{o}^{\prime \prime} .028 \pm \mathrm{o}^{\prime \prime} .002 . \\
& \pi=+\mathrm{o}^{\prime \prime} .030 \pm \mathrm{o}^{\prime \prime} .005 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$. OI 2 .

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
2	-47.6	-166.9	+0.005	0.64	
4	289.0	31.5	.373	0.60	
8	+145.6	49.3	.205	0.42	
10	188.0	+53.4	.417	0.30	
Br. 361	0.0	0.0		1.10	$+24^{\circ} .376$

Table and Solutions for Bradley 360.
Date. Hour \quad Angle. Obs. Ioo Days, Factor, Solution, Wt., Res., Meas-
Sept. 19, 1915... -034 M. $-2.29+0.735-0.056 \quad .8+0.001$ Be.
Sept. 21, 1915... 034 P. 2.27 .710 .056 .5 .00I Be.
Sept. 23, 1915... 030 P. 2.25 . 684 .05I $8-0.004$ Be.
Dec. $21,1915 \ldots+110$ M. -1. $36-0.704 .062 \quad .9+0.002 \mathrm{Sm}$.
Dec. 26, 1915... I 21 M. I.3I .762 . 064 . 8 . 004 Be.
Dec. 30, 1915... $0 \quad 9 \quad$ S. 1.27 . 803 . 054 1.0 -0.006 Sm.
Feb. 3, 1916... I 21 M. 0.92 . 986 . 062 . $5+0.003$ Be.
Sept. 9, 1916... +o 1о P. +1.27 +0.835 . 038 . 9 +0.005 Be.
Sept. I3, 1916... о 16 Ma. 1.3I . 794 . 029 . $8-0.004$ Be.
Sept. 16, 1916... 054 M. I. 34 . 760 . 032 1.0 .001 Sm.
Jan. $16,1917 \ldots$ to 57 M. $+2.56-0.940 \quad .038 \quad .5$ 0.000 Sm .
Jan. 19, 1917... -0 3 P. 2.59 . 955 . $035 \quad .8-0.003 \mathrm{Be}$.
Jan. 20, 1917... 0 16 Ma . 2.60 . 959 . 040 . $5+0.002 \mathrm{Sm}$.
Normal Equations:

$$
\begin{aligned}
+9.8000 c-0.5860 \mu-0.6158 \pi & =-0.4620 \\
+32.5387-\mathrm{I} .8737 & =+0.208 \mathrm{I} \\
+6.4407 & =+0.0640 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=-o^{\prime \prime} .046 \\
& \mu=+o^{\prime \prime} .028 \pm 0^{\prime \prime} .002 \\
& \pi=+o^{\prime \prime} .034 \pm 0^{\prime \prime} .004
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$. OII.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
2	-47.6	-166.9	-0.001	0.64	
4	289.0	31.5	+0.394	0.60	
8	+145.6	49.3	.195	0.42	
IO	I88.0	+53.4	.412	0.40	
Br. 360	-8.1	0.7		0.95	$+24^{\circ} .375$

No. 10. B.D. $+49^{\circ} .857$. \quad Persei. $\quad\left(3^{\mathrm{h}} 2^{\mathrm{m}} .0 ;+49^{\circ}\right.$ 14 4^{\prime}.)
Mag. 4.17. $\mu=+0^{\text {s. }}$.1292; - $0^{\prime \prime}$.080. Spectrum G.
The measures are in longitude. This star has a radial velocity of 50.5 km . per second. Other published parallaxes are

$$
\begin{aligned}
& \text { Flint }+\mathrm{o}^{\prime \prime} .10 \pm 0^{\prime \prime} .033 \text {, (Transits) } \\
& \text { Chase }+\mathrm{o}^{\prime \prime} . \mathrm{II} \pm \mathrm{o}^{\prime \prime} .027 \text {, (Heliometer). } \\
& \text { Adams } \mathrm{o}^{\prime \prime} .096, \quad \text { (Spectroscopic). }
\end{aligned}
$$

	Hour		Time in Parallax				
Date.	Angle.	Obs.	Ioo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
			ured by.				

Jan. $\quad \mathrm{I}, 1914 \ldots-07$ P. $-3.08-0.668-0.23 \mathrm{I} \quad .7+0.004 \mathrm{~S}$.
Jan. 6, 1914... 0 10 P. 3.03 . 730 . 228 1.0 003 S.
Jan. 14, 1914... to 6 P. 2.95 .816 . 214 . $8-0.008 \mathrm{~S}$.
Sept. 8, 1914... -0 I4 P. $-0.58+0.958 \quad .018 \quad .7+0.003 \mathrm{~S}$.
Sept. 21, 1914... 0 I P. 0.45 . 864 . 009 1. $0 \quad .000$ S.
Sept. 22, 1914... to 2 P. 0.44 . 855 . $002 \quad .7-0.006$ S.
Jan. 1, 1915... -04 P. $+0.57-0.664+.011 \quad .7+0.011 \quad S$.
Jan. 4, 1915... to 3 P. 0.60 . 702 . 043 . 5 - 0.020 S.
Jan. 5, 1915... 012 M. 0.61 . 714 . 017 . $7+0.007$ S.
Aug. 22, 1915.. -042 P. $+2.90+$ i.011 225 1.0 $-0.001 \quad \mathrm{~S}$.
Aug. 23, 1915... 042 P. 2.91 1,010 . $230 \quad .9 \quad .006$ S.
Aug. 25, 1915... 048 P. 2.93 1.008 . $218 \quad .8+0.008 \mathrm{~S}$.

Normal Equations:

$$
\begin{aligned}
+9.500 c+0.279 \mu+1.693 \pi & =+0.064 \\
+46.923+11.695 & =+3.496 \\
+6.944 & =+0.975
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=+o^{\prime \prime} .000 \\
& \mu=+o^{\prime \prime} .319 \pm 0^{\prime \prime} .005 \\
& \pi=+o^{\prime \prime} .120 \pm 0^{\prime \prime} .012
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .024$.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
1	-213.0	-160.2	+0.355	0.58	
2	7.2	+30.0	.376	0.52	
3	+120.0	10.6	-0.083	0.71	
6	+100.3	119.6	+0.352	0.50	
π	-53.0	-1.4		0.63	$+49^{\circ} .857$

No. II. B.D. $+0^{\circ}$.542. $\sum 367$. ($3^{h} 9^{m} .0 ;+0^{\circ} 2 I^{\prime} .7$.) Mag. 8.0-8.0.
The measures are in longitude. The components are separated by $\mathrm{o}^{\prime \prime} .95$. The combined image of the components if not round is very slightly elongated. We attempted to bisect the combined image. No other parallaxes of this star have been published.

	Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days 100 Day T.	Parallax , Factor, P.	Solution, m.	Wt., p.	Res.,	Measured by.
Sept.	9, 1915	-0 16	P.	-2.79	$+0.857$	-0.138	. 8	-0.006	6 Be .
Sept.	16, 1915..	+o 32	M.	2.72	. 786	. 146	. 5	+0.002	2 Be .
Sept.	23, 1915.	-0 13	P.	2.65	. 705	. 153	. 9	. 008	8 Be .
Jan.	23, 1916...	+0 12	S.	-1.43	-0.962	. 149	. 9	-0.003	3 Be.
Jan.	24, 1916.	028	P.	I. 42	. 965	. 152	1.0	. 000	- Be.
Sept.	20, 1916...	-0 16	Ma.	+0.98	+0.732	. 140	. 9	+0.001	I Be.
Sept.	25, 1916...	06	M.	1.03	.669	. 132	. 5	-0.008	8 Be .
Jan.	6, 1917..	+o 12	Ma.	$+2.06$	$-0.86 \mathrm{I}$. 147	I. 0	0.000	- Be
Jan.	20, 1917.	-0 5	Ma.	2.20	. 953	. 140	. 6	-0.007	$7 \begin{aligned} & \mathrm{Sm} . \\ & \mathrm{Be} . \end{aligned}$
Jan.	28, 1917...	to 50	M.	2.28	. 979	. 148	. 6	+0.001	$\begin{aligned} & \text { Sm. } \\ & \text { Be. } \end{aligned}$
Feb.	14, 1917...	1 I 5	P .	2.45	.971	. 158	. 5	. 011	I Be.

Normal Equations:

$$
\begin{aligned}
+8.2000 c-1.3140 \mu-1.6301 \pi & =-1.1980 \\
+34.7662-6.6250 & =+0.2040 \\
+6.1467 & =+0.2605 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .145 . \\
& \mu=+\mathrm{o}^{\prime \prime} .007 \pm 0^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .026 \pm \mathrm{o}^{\prime \prime} .008 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.OI 7 .

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	-22 I .2	-I 56.8	+0.402	0.70	
5	+I 80.8	+124.4	.349	0.88	$+0^{\circ} .547$
6	150.8	97.6	.284	0.49	$+0^{\circ} .546$
9	I 43.6	-49.2	-0.035	0.55	$+0^{\circ} .545$
π	0	0		0.97	$+0^{\circ} .542$

No. 12. B.D. $+3 \mathrm{I}^{\circ} .642$. oPersei $=\beta$ 535. ($3^{\mathrm{h}} 38^{\mathrm{m}} ;+3 \mathrm{I}^{\circ} 5^{\prime}$.) Mags. 4.0-8.5. $\quad \mu=+0^{s} .0008 ;-0^{\prime \prime} .024$. Spectrum B_{1}.
The measures are in longitude. The components of this star are separated by $\mathrm{o}^{\prime \prime} .83$. The combined image of the components seemed round. No other parallaxes have been published.

	Date.	Hour Angle. h. m.	Obs.	Time in T.	Parallax , Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & p . \end{aligned}$	Res., v.	Measred by.
Oct.	7, 1916	+0 3	M.	-2.64	+0.704	+0.094	I. 0	0.000	m.
Oct.	10, 1916...	-0 6	P.	2.61	. 666	. 090	. 9	+0.004	Sm.
Dec.	31, 1916.	to 41	M.	-1.79	-0.636	. 092	1.0	-0.005	Sm.
Jan	12, 1917.	023	P.	1.67	. 780	. 080	. 5	+0.006	Sm.
Jan.	30, 1	023	M.	1.49	.931	. 087	. 9	-0.002	Sm
Sept.	19, 1917	- 26	Ma	+0.83	+0.893	. 103	. 5	-0.005	Sm
Oct.	2, 1917	-0 25	P.	0.96	. 766	. 094	. 7	$+0.003$	Sm.
Oct.	6, 1917...	012	M.	1.00	. 719	.091	. 9	. 006	Sm.
Oct.	6, 1917...	+o 26	M.	1.00	. 719	. 106	1.0	-0.009	Sm.
Jan.	I, 1918...	+1 16	M.	+1.87	-0.646	. 088	I. 0	+0.001	Sm.
Feb.	7, 1918...	1 Io	M.	2.24	. 968	. 086	I. 0	. 001	Sm.
Feb.	13, 1918...	0 14	M.	2.30	. 984	. 086	1.0	. 001	Sm

Normal Equations:

$$
\begin{aligned}
+10.4000 c+0.4420 \mu-0.8097 \pi & =+0.9505 \\
+36.3912-3.7729 & =+0.0411 \\
+6.4979 & =-0.0357
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .092 \\
& \mu=+\mathrm{o}^{\prime \prime} .003 \pm \mathrm{o}^{\prime \prime} .003 \\
& \pi=+\mathrm{o}^{\prime \prime} .030 \pm \mathrm{o}^{\prime \prime} .006 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .015$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
1	+193.6	+117.6	+0.282	0.88	$+3 I^{\circ} .645$
4	44.4	-91.6	.253	0.56	
8	-26.0	129.2	.243	0.68	
10	289.2	+75.2	.222	0.49	
π	0	0		0.89	$+3 I^{\circ} .642$

No. 13. B.D. $+34^{\circ} .796$. Greenwich ${ }_{60} 284=$ Lalande 7443 .

$$
\left(3^{\mathrm{h}} 55^{\mathrm{m}} .5 ;+35^{\circ} 2^{\prime} .\right) \quad \text { Mag. 8.5. } \quad \mu=0^{\mathrm{s}} .1420 ;-\mathrm{I}^{\prime \prime} .354
$$

The measures are in longitude. Other parallaxes published are:
Russell - $\mathrm{O}^{\prime \prime} . \mathrm{OII} \pm \mathrm{O}^{\prime \prime} . \mathrm{OI} 4$, (Photographic).
Schlesinger $+0^{\prime \prime} .039 \pm 0^{\prime \prime} .013$, (Photographic).
Flint - $\mathrm{o}^{\prime \prime} .020 \pm \mathrm{o}^{\prime \prime} .055$, (Transits).
Chase $\quad+\mathrm{o}^{\prime \prime} .04 \pm \mathrm{o}^{\prime \prime} .026$, (Heliometer).
Adams $+\mathrm{o}^{\prime \prime} .042$, (Spectroscopic).

	Date.	Hour Angle. h. m.	Obs.	Time in roo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Sept.	21, 1914.	-0 6	P.	-I.75	+0.915	+0.016	1.0	-0.003	3 S.
Sept.	22, 1914...	09	P.	1.74	. 908	. 016	. 7	. 003	3 S.
Sept.	27, 1914.	07	S.	1.69	. 869	. 019	. 9	. 002	S.
Sept.	28, 1914.	014	P.	1.68	. 859	. 016	. 8	$+0.001$	I S.
Oct.	I, 1914.	040	P.	1.65	. 830	. 018	. 9	. 002	2 S
Jan.	I, 1915...	- 8	P.	-0.73	-0.578	. 069	. 9	$+0.005$	5 S.
Jan.	5, 1915..	to 7	M.	0.69	. 633	. 074	1.0	. 003	3 S.
Jan.	8, 1915..	-0 6	P.	0.66	. 673	. 082	. 7	-0.003	3 S.
Sept.	9, 1915...	to 7	P.	+1.78	+0.984	. 309	. 8	-0.002	2 S.
Sept.	24, 1915..	-0 43	Ma.	1.93	. 896	. 311	. 9	+0.007	7 S.
Feb.	19, 1916...	+o 52	Ma.	+3.41	-0.985	. 416	. 8	-0.004	4 S
Feb.	21, 1916...	- 55	P.	3.43	. 988	. 415	7	. 001	I S.

[^0]
Normal Equations:

$$
\begin{aligned}
+10.100 c-0.837 \mu+2.257 \pi & =+1.417 \\
+37.146-7.390 & =+2.853 \\
+7.279 & =-0.178
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .144 . \\
& \mu=+\mathrm{o}^{\prime \prime} .390 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .072 \pm \mathrm{o}^{\prime \prime} .005 .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime}$.oI2.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
1	-161.7	-89.5	+0.264	0.63	
3	164.8	+55.2	.247	0.48	
5	+137.3	64.2	.240	0.45	
6	189.1	-30.0	.249	0.52	
π	-3.3	2.0		0.76	$+34^{\circ} .796$

No. 14. B.D. $+53^{\circ} \cdot 794$. $\Sigma 566$. ($4^{\mathrm{h}} 32^{\mathrm{m}} .0 ;+53^{\circ}$ 16^{\prime}.6.). Mag. 5.44. $\mu=+0^{5} .0075 ;-0^{\prime \prime} .090$. Spectrum A.
This is a triple star. The distance between $A B$ is $\mathrm{o}^{\prime \prime} .2 \mathrm{I}$ and between AB and C is $\mathrm{I}^{\prime \prime} .58$. The combined image of these three stars was elongated. We attempted to measure to the center of gravity of this elongated image. The measures are in longitude. No other parallaxes of this star have been published.

Date.	Hour Angle. h. m.	Obs.	Time in roo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., ข.	Meas- ured by.
Feb. 21, 1915	to 8	M.	-6.91	-0.964	+0.096	1.0	-0.004	Sm.
Sept. 27, 1915.	-0 36	S.	-4.73	+0.947	101	1.0	+0.004	Sm.
Oct. 9, 1915.	040	M.	4.61	. 856	. 107	1.0	-0.003	Sm.
Jan. 23,	034	S.	-3.5	-0.727	. 089	. 8	+0.010	Sm.
Sept. 17, 1916.	-0 30	P.	-1.17	$+0.989$. 122	. 7	-0.011	Sm.
Sept. 20, 1916..	0 0	Ma.	1.14	. 978	. 106	. 8	+ . 005	Sm
Jan. 2, 1917..	-0 23	M.	-0.10	-0.447	. 098	1.0	+0.008	Sm.
Jan. 6, 1917...	018	Ma.	0.06	. 507	. 096	. 5	. 010	Sm.
Jan. 28, 1917...	to 2	M.	+0.16	.791	. 121	1.0	-0.016	Sm.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days T.	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & p . \end{aligned}$	Res., v.	Measured by.
Sept.	19, 1917.	00	Ma.	$+2.50$	$+0.983$. 124	. 5	-0.007	Sm.
Oct.	2, 1917..	-0 30	P.	2.63	. 910	.II4	. 8	$+0.003$	Sm.
Oct.	2, 1917...	00	P.	2.63	. 910	.II9	. 5	-0.002	Sm.
Oct.	6, 1917...	+07	M.	2.67	. 878	. 114	1.0	+0.003	Sm.
Jan.	2I, 1918...	+0 5	M.	+3.74	-0.709	. 114	1.0	-0.003	Sm.
Feb.	8, 1918...	-0 41	P .	3.92	. 890	. 108	. 5	+0.003	Sm.
Feb.	II, $1918 .$.	034	P.	3.95	. 912	. 108	. 9	.003	Sm.

Normal Equations:

$$
\begin{aligned}
+\mathrm{I} 3.0000 c-4.1970 \mu+0.8183 \pi & =+\mathrm{I} .4043 . \\
+\mathrm{I} 58.4493-2.4220 & =-0.1993 . \\
+9.3634 & =+\mathrm{o.1271}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} . \mathrm{To8} \\
& \mu=+\mathrm{o}^{\prime \prime} .008 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .02 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .007
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .023$.

Comparison Stars.

No.	X.	Y	Dependence.	Diameter.	B. D. No.
2	+135.6	-159.2	+0.242	0.58	$+52^{\circ} .869$
3	-59.2	193.2	.217	0.60	$+52^{\circ} .862$
10	+156.4	+79.2	.280	.042	
15	-244.0	223.2	.261	0.59	$+53^{\circ} .789$
π	0.0	0.0		0.68	$+53^{\circ} .794$

No. 15. B.D. $+53^{\circ} \cdot 3796=\Delta$ 4. $\quad\left(4^{\mathrm{h}} 32^{\mathrm{m}} \cdot 5 ;+53^{\circ}\right.$ 7^{\prime}.) Mag. 8.8-9.8.
No parallaxes of this star have been published. The same plates and same set of comparison stars were used to derive the parallax of $\Sigma 566$ and that of $\Delta 4$. We have designated the brighter component of $\Delta 4$ by $\Delta 4$ and the fainter component by $\Delta 4^{\prime}$.

Table and Solutions for Δ_{4}.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	roo Days,	Factor,	Solution,	Wt.,	Res., Meas-
	h. m.	T.	P.	m.	p.	v.	ured by.

Feb. 21, 1915... to 8 M. -6.91-0.964 $+0.024 .5-0.005 \mathrm{Sm}$.
Sept. 27, 1915... -0 36 S. $-4.73+0.947$. $022 \quad 9+0.003 \mathrm{Sm}$.
Oct. 9, 1915... 040 M. 4.6 I . 856 . $033 \quad .7$ - 0.008 Sm .
Jan. 23, 1916... -034 S. $-3.55-0.727$. 019 1.0 +0.006 Sm.
Sept. 17, 1916... -0 30 P. -1.17 +0.989 . 038 .5 -0.007 Sm.
Stpt. 20, 1916... 0 o Ma. 1.14 . 978 .031 1.0 0.000 Sm.
Jan. 2, 1917... -023 M. $-0.10-0.447$. 024 . $6+0.008$ Sm.
Ján. 6, 1917... 018 Ma. 0.06 . 507 . 023 . 5 . 009 Sm .
Jan. 28, 1917... to $2 \mathrm{M} .+0.16$.791 . 039 . 9 -0.007 Sm.
Sept. 19, 1917... 0 o Ma. $+2.50+0.983$. 024 . 5 +0.014 Sm. Oct. 2, 1917... -030 P. 2.63 . 910 . 044 1.0 -0.006 Sm .
Oct. 2, 1917... $0 \quad 0 \quad$ P. 2.63 . 910 . 045 . 5 . 007 Sm.

Oct. 6, 1917... to 7 M. 2.67 . 878 .026 .5 +0.012 Sm.
Jan. 2I, 1918... +o 5 M. +3.74-0.709 . 042 . $5-0.004 \mathrm{Sm}$.
Feb. 8, 1918... -0 4I P. 3.92 . 890 . 037 . 5 +0.002 Sm.
Feb. II, 1918... -0 34 P. 3.95 . 912 . 042 1.0 -0.003 Sm.

Normal Equations:

$$
\begin{aligned}
+\mathrm{II} .1000 c-1.8500 \mu+1.0654 \pi & =+0.3579 \\
+120.8478-3.3294 & =+0.1520 \\
+8.1602 & =+0.0363
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .032 . \\
& \mu=+\mathrm{o}^{\prime \prime} .008 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .004 \pm \mathrm{o}^{\prime \prime} .007 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{ozo}$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	+135.6	-159.2	+0.288	0.58	$+52^{\circ} .869$
3	-59.2	193.2	.140	0.60	$+52^{\circ} .862$
10	+156.4	+79.2	.397	0.42	
15	-244.0	223.2	.175	0.59	$+53^{\circ} .789$
π	+50.0	-2.7		0.73	$+53^{\circ} .796$

Table and Solutions for Δ^{\prime} 。
Hour Time in Parallax
Date. Angle. Obs. 100 Days, Factor, Solution, Wt., Res., Meash. m. T. P. m. p. \quad. ured by.

Feb. 21, 1915... to 8 M. $-6.91-0.964+0.034$ 1.0 +0.010 Sm .
Sept. 27, 1915... $-036 \mathrm{~S} .-4.73+0.947$. 044 . $8-0.004 \mathrm{Sm}$. Oct. 9, 1915... 0 40 M. 4.61 .856. . 044 . 8 . 004 Sm.

Jan. 23, 1916... -034 S. $-3.55-0.727$. 045 . $6-0.004$ Sm.
Sept. 17, 1916... -0 30 P. - $1.17+0.989$. 039 1.0 -0.001 Sm. Sept. 20, 1916... 0 o Ma. 1.14 . 978 . 036 . 9 +0.002 Sm.
Jan. 2, 1917... -023 M. -0.10-0.447 . 046 1.0 -0.008 Sm. Jan. 6, 1917... 018 Ma . 0.06 . 507 . 027 . 5 +0.01I Sm. Jan. 28, 1917... to 2 M. +0.16 .791 . 054 . 6 -0.016 Sm.
Sept. 19, 1917... 0 o $\mathrm{Ma} .+2.50+0.983 \quad .023 \quad .5$-0.012 Sm. Oct. 2, 1917... -030 P. 2.63 . 910 . . 036 1.0 .001 Sm. Oct. 2, 1917... 0 o P. 2.63 . 910 . 041 . 5 . 006 Sm. Oct. 6, 1917... to 7 M. 2.67 . 878 .03I I:o to.004 Sm.
Jan. 21, 1918... to 5 M. $+3.74-0.709$. 022 1.0 +0.013 Sm.
Feb. 8, 1918... -0 41 P. 3.92 . 890 . 050 . 7 -0.015 Sm.
Feb. II, 1918... 034 P. 3.95 . 912 .03I .5 +0.004 Sm.

Normal Equations:

$$
\begin{aligned}
+12.4000 c-2.4180 \mu+1.6828 \pi & =+0.4662 \\
+145.9499-0.4393 & =-0.2015 \\
+9.0619 & =+0.0573 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .038 \\
& \mu=-\mathrm{o}^{\prime \prime} .004 \pm \mathrm{o}^{\prime \prime} .002 . \\
& \pi=-\mathrm{o}^{\prime \prime} .003 \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .026$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	+135.6	-59.2	+0.288	0.58	$+52^{\circ} .869$
3	-59.2	193.2	.142	0.60	$+52^{\circ} .862$
10	+156.4	+79.2	.393	0.42	
15	-244.0	223.2	.177	0.59	$+53^{\circ} .789$
$\Delta_{4^{\prime}}$	+48.8	-2.9		0.52	

No. 16. B.D. $+45^{\circ} \cdot 992$. Groombridge 884. $\left(4^{\mathrm{h}} 44^{\mathrm{m}} \cdot 4 ;+45^{\circ} 4 \mathrm{I}^{\prime}\right.$.) Mag. 6.5. $\quad \mu=+o^{3} .0358$; - $0^{\prime \prime} .562$.
The measures were in longitude. Other parallaxes published are:
Russell, (Photographic), $\quad+\mathrm{o}^{\prime \prime} .078 \pm \mathrm{o}^{\prime \prime}$.org.
Elkins-Chase, (Heliometer), $+\mathrm{o}^{\prime \prime} .12 \pm \mathrm{o}^{\prime \prime} .025$.
Adams, (Spectroscopic), $\mathrm{o}^{\prime \prime} .07$.

	Date.	Hour Angle. h. m.	Obs.	Time in Io Days, T.	Parallax s, Factor, P.	Solution, m.	Wt., p	Res., v.	Measured by
Oct.	II, 1915	-0 26	M.	-5.01	+0.845	-0.030	. 8	+o.	Be.
Oct.	24, 1915.	030	P.	4.88	. 703	. 030	1.0	. 005	Be.
Oct.	28, 1916...	-0 36	M.	-I.18	$+0.642$	+0.030	. 8	+0.005	Be.
Oct.	28, 1916...	+o 7	M.	1.18	. 642	. 045	1.0	-0.010	Be.
Nov.	7, 1916...	-0 8	P.	1.08	. 498	. 044	1.0	. 009	Sm.
Jan.	2, 1917...	+o 7	M.	-0.52	-0.433	+. 039	1.0	-0.010	Be.
Jan.	16, 1917..:	-0 24	M.	0.38	. 637	. 028	1.0	+0.001	Be.
Feb.	12, 1917...	to II	M.	0.11	. 914	. 018	. 8	. 01	Sm.
Oct.	13, 1917...	-0 19.	M.	+2.32	+o.82I	+.094	. 5	+0.002	Sm.
Oct.	30, 1917...	0 II	P.	2.49	. 618	. 096	. 9	-0.001	Sm.
Oct.	3I, 1917...	to 2	Ma.	2.50	. 604	. 084	. 8	+0.011	Sm.
Feb.	II, 1918. ${ }^{\text {d }}$	- 10	P .	+3.53	-0.906	+. 099	. 5	-0.010	Sm.
Feb.	I3, 1918...	012	P.	3.55	. 919	. 085	. 9	+0.005	Sm.

Normal Equations:

$$
\begin{aligned}
+11.0000 c-2.7190 \mu+1.4012 \pi & =+0.4670 \\
+78.8357-9.1612 & =+1.0437 \\
+5.4600 & =-0.0056
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=+o^{\prime \prime} .045 \\
& \mu=+o^{\prime \prime} .078 \pm 0^{\prime \prime} .003 \\
& \pi=+o^{\prime \prime} .072 \pm 0^{\prime \prime} .01 \dot{2}
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .025$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	+ I8I.	-95.2	+0.202	0.54	
3	148.0	+19.6	.215	0.60	
5	-104.4	235.2	.295	0.51	$+45^{\circ} .990$
10	129.6	-189.2	.288	0.46	
π	0	0		0.76	$+45^{\circ} .992$

No. 17. B.D. -5°.II23. Weisse $4^{\text {h. }}$ II89. ($4^{\mathrm{h}} 55^{\mathrm{m}} \cdot 9 ;-5^{\circ},{52^{\prime}}^{\prime}$) Mag. 6.5. $\mu=+0^{3} .040$; - I'. Io. Spectrum K.
The measures are in longitude. Other published parallaxes are:
Flint, (Transits), $\quad+0^{\prime \prime} .29 \pm 0^{\prime \prime} .042$.
Smith, (Heliometer), $\quad+0^{\prime \prime} .104 \pm 0^{\prime \prime} .015$.
Adams, (Spectroscopic), $+\mathrm{o}^{\prime \prime} .12$.

	Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days, T.	Parallax , Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & \text { p. } \end{aligned}$	Res., τ.	Measured by.
Jan.	30, 1913.	+0 37	M.	-3.09	$-0.84 \mathrm{I}$	-0.092	. 6	-0.003	M.
Feb.	5, 1913.	-0 18	B.	3.03	.891	. 109	. 6	+0.015	M.
Oct.	13, 1913.	to 10	M.	-0.53	+0.78I	+0.010	8	$+0.007$	M.
Oct.	22, 1913...	050	S.	0.44	. 674	. 035	. 8	-0.017	M.
Oct.	28, 1913...	- 30	P.	0.38	. 593	. 020	. 9	. 002	M.
Nov.	2, 1913.	020	P.	0.33	. 521	. 015	. 9	$+0.003$	M.
Jan.	I, 1914...	-0 18	P.	+0.27	-0.475	+0.018	. 5	-0.004	M.
Jan.	5, 1914...	0	P.	0.31	. 535	. 1018	. 9	. 004	M.
Feb.	2, 1914...	+o 2	S.	0.59	. 865	. 011	. 9	$+0.004$	M.
Feb.	21, 1914.	- 2	M.	0.78	. 976	. 027	. 5	-0.009	M.
Sept.	2I. 1914...	-0 2	P.	$+2.90$	+0.962	+0.120	. 9	$+0.005$	M.
Sept.	22, 1914...	+0 12	P.	2.91	. 957	. 122	1.0	. 003	M.

Normal Equations:

$$
\begin{aligned}
+9.3000 c+1.7680 \mu+0.9647 \pi & =+0.2255 \\
+28.6225+6.4955 & =+1.0329 \\
+5.5817 & =+0.3335
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .016 . \\
& \mu=+\mathrm{o}^{\prime \prime} . \mathrm{I} 4 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .005 . \\
& \pi=+\mathrm{o}^{\prime \prime} . \mathrm{TO} 3 \pm \mathrm{o}^{\prime \prime} .012 .
\end{aligned}
$$

p. e. unit weight,$\pm \mathrm{o}^{\prime \prime} .024$.

Comparison Stars.

| No. | X | | Y. | Dependence. | Diameter. |
| ---: | ---: | ---: | ---: | ---: | ---: |\quad B. D. No.

No. 18. B.D. $+8^{\circ}$.866. OE $98=14$ Orionis. $\quad\left(5^{\mathrm{h}} 2^{\mathrm{m}} \cdot 5 ;+8^{\circ} 22^{\prime}\right.$.)
Mag. 6.0-6.8. $\mu=+0^{s .0017}$; - $0^{\prime \prime} .06$ r. Spectrum F.
The measures are in longitude. This is a binary of very long period. The components are separated about $0^{\prime \prime} .9$. Their combined images formed a very slightly elongated image. The attempt was to bisect this image.

No other parallaxes of this star have been published.

	Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days, T.	Parallax Factor, P.	Solution, m.	Wt.,	Res., v.	Measured by.
Feb.	19, 1915...	to 10	P.	-4.56	-0.954	-0.206	.7	-0.007	Be.
Feb.	21, 1915.	036	M.	4.54	. 962	. 225	. 9	+ . 012	Be.
Oct.	11, 1915...	+o 50	M.	-2.22	+0.841	. 190	. 9	-0.014	Be.
Nov.	6, 1915...	-0 17	P.	1.96	. 517	. 209	. 5	+0.005	Be.
Nov.	9, 1915...	+o 34	P.	1.93	. 472	. 205	. 8	. 001	Be.
Oct.	7, 1916...	+o 32	M.	+1.40	+0.870	. 200	. 5	+0.001	Be.
Oct.	14, 1916...	- 27	M.	1. 47	. 804	. 212	. 8	. 013	Be.
Oct.	24, 1916...	-0 30	P.	1.57	. 687	. 020	1.0	. 002	Be.
Jan.	28, 1917...	+o 17	M.	+2.53	-0.787	.190	1.0	-0.014	Be.
Feb.	12, 1917...	- 046	M.	2.68	. 917	. 211	. 5	+0.007	Be .
Feb.	18, 1917 \ldots	029	M.	2.74	.951	. 215	. 8	. 011	Be.
Feb.	21, 1917...	07	P.	2.77	. 965	.198	1.0	-0.005	Be.

Normal Equations:

$$
\begin{aligned}
+9.4000 c+0.4780 \mu-\mathrm{I} .3467 \pi & =-\mathrm{I} .9233 . \\
+71.2869-\mathrm{I} .2843 & =-0.0118 . \\
+6.4805 & =+0.2959 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .204 . \\
& \mu=+\mathrm{o}^{\prime \prime} .006 \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=+\mathrm{o}^{\prime \prime} .016 \pm \mathrm{o}^{\prime \prime} .012 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .03 \mathrm{I}$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
2	189.6	152.0	0.182	0.76	$+8^{\circ} .86$ I
9	+148.0	106.4	.21 I	0.7 I	$+8^{\circ} .87 \mathrm{I}$
II	200.0	-59.2	.295	0.54	
I3	-187.2	-104.4	.312	0.38	
π	0.0	0.0		0.60	$+8^{\circ} .866$

No. 19. B.D. $+39^{\circ} .1248$. λ Aurigae $=\Sigma 3$, App. II. $\left(5^{\mathrm{h}} 12^{\mathrm{m}} . \mathrm{I}\right.$;

This is a quadruple star, but it is probable that it is not a physical system. The component A has a large proper motion, and this is the only component that we measured. The measures are in longitude. Other published parallaxes are:

Flint,	$+o^{\prime \prime} .070 \pm 0^{\prime \prime} .028$.
Chase,	$+o^{\prime \prime} .1 \mathrm{II} \pm 0^{\prime \prime} .04 \mathrm{I}$.
Kostinsky,	$+\mathrm{o}^{\prime \prime} .10 \pm 0^{\prime \prime} .02 \mathrm{I}$.
Millosevich,	$+\mathrm{o}^{\prime \prime} . \mathrm{III} \pm 0^{\prime \prime} .015$.
Adams,	$+\mathrm{o}^{\prime \prime} .100$.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	roo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
	m.ed by.						

Oct. 7, 1912... $0 \quad 0 \quad$ M. $-5.54+0.907-0.003 \quad .7 \quad 0.000 \quad$ Sm.

Oct. 20, 1912... -027 B. $5.41 \quad .788+0.002 \quad .8-0.003 \mathrm{Sm}$.
Feb. 4, 1914... 034 P. $-0.69-0.812+0.092 \quad .8+0.012 \mathrm{Sm}$.
Feb. 9, 1914... 024 S. 0.64 . 859 . 102 1.0 002 Sm .
Feb. 2I, 1914... to 4 M. 0.52 . 944 .III 9 -0.005 Sm.
Mar. 3, 1914... 015 M. 0.42 . 984 . 116 . 5 . 007 Sm .
Sept. 28, 1914... -050 P. $+1.67+0.965+0.189 \quad .7+0.005 \mathrm{Sm}$.
Sept. 30, 1914... 020 M. 1. 69 . 955 . $202 \quad .5-0.007 \mathrm{Sm}$.
Oct. 19, 1914... to 4 P. 1. 88 . 804 . $192 \quad .7+0.006 \mathrm{Sm}$.
Oct. 28, 1914... -0 9 M. 1.97 . $701 \quad .202 \quad .9-0.003 \mathrm{Sm}$.
Feb. 8, 1915... -028 P. $+3.00-0.848+0.205$. $9-0.001 \mathrm{Sm}$.
Feb. 10, 1915... to 5 P. 3.02 . 866 . 206 1.0 002 Sm .
Normal Equations:

$$
\begin{aligned}
+9.4000 c+0.7470 \mu-0.8674 \pi & =+\mathrm{I} .2730 \\
+72.5882-5.9503 & =+\mathrm{I} .9887 \\
+7.0239 & =-0.1746 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=+o^{\prime \prime} .135 . \\
& \mu=+o^{\prime \prime} .128 \pm 0^{\prime \prime} .002 \\
& \pi=+o^{\prime \prime} .070 \pm o^{\prime \prime} .007
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.OI 7 .

Comparison Stars.

| No. | | X. | Y. | Dependence. | Diameter. |
| ---: | ---: | ---: | ---: | ---: | ---: |\quad B. D. No.

No. 20. B.D. - 3°.II23. Weisse I $5^{\mathrm{h}} .592$. ($5^{\mathrm{h}} 26^{\mathrm{m}} \cdot 4$; $-3^{\circ} 42^{\prime}$.) Mag. 8.7. $\mu=+0^{8} .0496 ;-2^{\prime \prime}$.094. Spectrum Ma.
The measures were in longitude. Other published parallaxes are:
Schlesinger, $+0^{\prime \prime} .189 \pm 0^{\prime \prime}$. oro.
Flint, $\quad+0^{\prime \prime} .06 \pm 0^{\prime \prime} .036$.
Kinberg, $\quad+0^{\prime \prime} .139 \pm 0^{\prime \prime} .065$.
Adams, $0^{\prime \prime}$.I 58 .

	Hour		Time in Parallax				
Date.	Angle.	Obs.	Ioo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
	ured by.						

Nov. I, 1913... +018 M. $-6.13+0.66 \mathrm{I}-0.500 \quad .5+0.017$ M. Nov. 5, 1913... o I S. 6.09 . 607 . $483 \quad .8$.000 M.

Feb. 2, 1914... +020 S. $-5.20-0.777-0.481 \quad 1.0-0.005$ M.
Mar. 12, 1914... I 14 M. 4.82 . 994 . 492 0.9 +o.016 M.
Mar. 13, 1914... -0 22 M. 4.8I . 994 . $470 \quad .7$-0.005 M.
Nov. 4, 1914... -04 I M. $-2.45+0.624-0.31 \mathrm{I} \quad 1.0-0.007$ M.
Nov. 13, 1914... to 45 M. 2.36 . 495 . 302 . 9 .016 M.
Oct. 21, 1916... +09 M. $+4.72+0.789-0.005 .9+0.018$ M.
Oct. 28, 1916... 020 M. $4.79 .709+0.018$. 8 - 0.005 M.
Nov. 3, 1916... -O II Ma. 4.85 . 630 .013 8 +0.00I M.
Jan. 28, 1917... to 48 M. $-5.71-0.723-0.027 \quad .8-0.017$ M.
Feb. II, 1917... $055 \mathrm{M} . \quad 5.85$. 867 .0II 6 +o.001 M.
Feb. 22, 1917... 022 M. 5.96 . 943 . 009 1.0 006 M.
Normal Equations:

$$
\begin{aligned}
+10.700 c+0.582 \mu-0.74 \mathrm{I} \pi & =-2.4 \mathrm{I} 5 \\
+262.98 \mathrm{I}+0.683 & =+\mathrm{II} .82 \mathrm{I} \\
+6.347 & =+0.396
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=-o^{\prime \prime} .226 \\
& \mu=+0^{\prime \prime} .213 \pm 0^{\prime \prime} .002 \\
& \pi=+o^{\prime \prime} .146 \pm 0^{\prime \prime} .014
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} .036$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
1	-126.3	+5.8	+0.614	0.50	$-3^{\circ} .1118$
2	+148.8	7.7	.822	0.55	$-3^{\circ} .1127$
9	-22.6	-13.5	-0.436	0.45	$-3^{\circ} .1119$
π	+54.7	+15.7		0.85	$-3^{\circ} .1123$

No. 21. B.D. $-13^{\circ} .2267$. β roir $=9$ Argus. $\left(7^{\mathrm{h}} 47^{\mathrm{m}} \cdot \mathrm{I} ;-\mathrm{r} 3^{\circ} 3^{3}\right.$. $)$ Mag. 5.6-6.7. $\quad \mu=-0^{8} .004 \mathrm{I}$; - ".339. Spectrum F_{8}.
The measures are in right ascension. This is a binary with a period of about 23 years. The components are separated about $0^{\prime \prime} .25$. The combined image seemed round and was bisected in the measuring. Other parallaxes published are by :

Flint, $\quad+o^{\prime \prime} .028 \pm 0^{\prime \prime} .026$, (Transits).
Russell, $+\mathrm{o}^{\prime \prime} .068$, (Hypothetical).
$\begin{array}{ccccccc} & \text { Hour } & \text { Time in Parallax } & & \\ \text { Date. } & \text { Angle. } & \text { Obs. } 100 \text { Days, Factor, } & \text { Solution, } & \text { Wt., } & \text { Res., Meas- }\end{array}$ $\begin{array}{cccccc}\text { Angle. } & \text { Obs. } & 100 \text { Days, Factor, } & \text { Solution, } & \text { Wt., } & \text { Res., Meas- } \\ \text { h. m. } & \text { T. } & P . & m . & \text { p. } & v . \quad \text { ured by. }\end{array}$

Mar. 14, 1915... to 52 M. $-4.06-0.83-0.298$ 1.0 +0.004 M .
Mar. 27, 1915... — 3 Ma. 3.93 . 94 . 296 1.0 -0.001 M.
Nov. 24, 1915... + I 37 M. -I.5I $+0.78-0.254 \quad .5$ +0.004 M.
Nov. 27, 1915... -08 M. 1.48 . 73 . 250 . $6-0.001$ M.
Nov. 29, 1915... 0 o S. 1.46 .72 247 1.0 005 M.
Nov. 30, 1915... -0 18 P. I. 45 . 7 I . 246 I. $0 \quad .006$ M.
Mar. 23, 1916... -06 M. $-0.3 \mathrm{I}-0.9 \mathrm{I}-0.293 \quad .5+0.001 \mathrm{M}$.
Apr. 10, 1916... to 54 P. 0.13 . 99 . 297 1.0 . 003 M .
Nov. 19, 1916... -0 II P. $+2.10+0.81-0.256 \quad .5+0.011 ~ M$.
Nov. 27, 1916... $0 \quad 0 \quad$ M. 2.18 . 73 . 250 1.0 003 M.
Mar. 24, 1917... to $8 \mathrm{Ma} .+3.35-0.92-0.307 \quad .7^{\circ}+0.019 \mathrm{M}$.
Mar. 25, 1917... о оо M. 3.36 . 93 . 280 . 8 -0.008 M.
Mar. 28, 1917... -0 10 P. 3.39 . 94 . 277 1.0 012 M.

Normal Equations:

$$
\begin{aligned}
+10.6000 c-1.1750 \mu-2.1500 \pi & =-2.9014 \\
+74.0188-1.3860 & =+0.3629 \\
+7.6420 & =+0.7721
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .268 \\
& \mu=+\mathrm{o}^{\prime \prime} .005 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .12 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .025$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B
6	+273.6	+82.8	+0.223	0.45	
7	-67.2	226.0	.258	0.35	$-13^{\circ} .2262$
8	23.2	-77.2	.253	0.47	
10	168.8	215.6	.266	0.36	$-13^{\circ} .2258$
π	0.0	0.0		0.73	$-13^{\circ} .2267$

No. 22. B.D. $+27^{\circ} .1589$. x Cancri. ($8^{\mathrm{h}} 14^{\mathrm{m}} ;+27^{\circ} 33^{\prime}$.)
Mag. 5.16. $\mu=-0^{s} .0009 ;-0^{\prime \prime} .388$. Spectrum F.
The measures are in right ascension. The star has a large proper motion. No other parallaxes have been published.
$\begin{array}{ccccccc} & \text { Hour } & & \text { Time in Parallax } \\ \text { Date. } & \text { Angle. } & \text { Obs. } & \text { Ioo Days, Factor, } & \text { Solution, } & \text { Wt., } & \text { Res., Meas- } \\ & \text { h. m. } & \text { T. } & \text { P. } & m . & p . & v . \\ & \text { ured by. }\end{array}$
Oct. 28, 1916... - II M. $-2.85+0.96+0.025 \cdot .5-0.008 \mathrm{Sm}$.
Nov. I9, I916... 0 I P. . 2.63 . 86 .016 1.0 .000 Sm.
Nov. 2I, 1916... 043 P. 2.6I 85 . 816 . 0 . 000 Sm .
Mar. 30, 1917... -0 32 M. -I.32-0.90 $-0.020 \quad .6+0.013$ Sm.

Apr. II, I917... 023 P. $1.20 \quad .97$. 004 I. 0 . 004 Sm.
Nov. 3, 1917... -0 18 M. $+0.86+0.95+0.012 .5+0.005 \mathrm{Sm}$.
Nov. 4, I917... $0.38 \quad$ P. $\quad .87$. $94 \quad .016 \quad .9 \quad .001$ Sm.
Dec. IO, 1917... 032 P. 1.23 . 65 .012 6 .001 Sm.
Mar. 7, 1918... +038 M. $+2.10-0.69-0.009 .5+0.005 \mathrm{Sm}$.
Mar. I6, 1918... 028 Ma. 2.19 .79 0.000 . 0.006 Sm .
Mar. 29, 1918... -0 $48 \quad \mathrm{P} . \quad 2.32 \quad .89-0.012 \quad .5$ +0.005 Sm.
Apr. I, I9I8... 0 I6 M. 2.35 .9I .002 1.0 -0.005 Sm .

Normal Equations:

$$
\begin{aligned}
+8.6000 c-0.3860 \mu-0.5940 \pi & =+0.0326 \\
+32.4643-5.4033 & =-0.0756 \\
+6.6952 & =+0.0842
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .005 . \\
& \mu=-\mathrm{o}^{\prime \prime} .001 \pm \mathrm{o}^{\prime \prime} .003 \\
& \pi=+\mathrm{o}^{\prime \prime} .060 \pm \mathrm{o}^{\prime \prime} .006 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .015$.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
3	-212.8	+3.2	+0.046	0.64	
4	216.4	107.2	.247	1.03	$+27^{\circ} .1582$
7	+69.2	-22.4	.313	0.79	$+27^{\circ} .1591$
8	96.4	24.8	.339	0.6 I	
II	162.4	207.2	.055	0.68	$+27^{\circ} .1593$
π	0.0	0.0		0.83	$+27^{\circ} .1589$

 $+42^{\circ} 3^{\prime}$.) Mag. 8.5. $\mu=-0^{s} .024 \mathrm{I} ;-0^{\prime \prime} .649$.
The measures are in right ascension. Other parallaxes published for this star are:

Chase, - $\mathrm{o}^{\prime \prime} .08 \pm \mathrm{o}^{\prime \prime} .048$, (Heliometer).
Adams, $0^{\prime \prime} .058$, (Spectroscopic).

Hour Time in Parallax
Date. Angle. Obs. Ioo Days, Factor, Solution, Wt., Res., Meash. m. T. P. m. p. v. ured by.

Mar. 23, 1916... to 7 M. $-4.54-0.80+0.086$. $6-0.014 \mathrm{Sm}$.
Nov. 27, 1916... $-0 \quad 3 \quad$ M. $-2.05+0.84+0.070 \quad$ 1.0 +0.007 Sm .
Dec. 2, $1916 \ldots 024$ M. $\quad 0.00 \quad .80 \quad .091 \quad 0.6-0.015 \mathrm{Sm}$.
Dec. 9, 1916... o 35 M. $\quad 1.93 \quad .72$. 064 . $8+0.009$ Sm.
Mar. 25, 1917... $+0 \quad 7$ M. $-0.87-0.81 \quad+0.024 \quad .5+0.002 \mathrm{Sm}$.
Mar. 28, 1917... -0 15 P. . 84 . 83 .019 . 9 .006 Sm .
Mar. 30, 1917... 0 13 M. . 82 . 85 .019 1.0 . 005 Sm .
Nov. 17, 1917... -054 M. $+1.50+0.90+0.0220 .6+0.012$ Sm.
Nov. 17, 1917... 020 M. $\begin{array}{rl}1.50 & .90 \\ .040 & .6\end{array}$
Dec. 10, 1917... $0 \quad 5 \quad$ P. 1.73 . 71 . 037 1.0 .010 Sm.

Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., v.	Meas ured by.
22, 1918	- II	P.	+2.75	-0.78	-0.022	I. 0	+0.004	Sm.
Mar. 28, 1918.	- 44	M.	2.81	. 84	. 006	0.6	-0.014	Sm.
Mar. 29, 1918.	- 33	P.	2.82	. 84	. 024	. 6	+0.004	Sm.

Normal Equations:

$$
\begin{aligned}
+9.8000 c+0.1290 \mu-0.5840 \pi & =+0.3097 \\
+46.3998-2.0719 & =-0.6176 \\
+6.4901 & =+0.1500 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .033 . \\
& \mu=-\mathrm{o}^{\prime \prime} .058 \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=+\mathrm{o}^{\prime \prime} . \mathrm{IO} 4 \pm \mathrm{o}^{\prime \prime} .0 \mathrm{I} \mathrm{I} .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{oz} 8$.

Comparison Stars.

The measures are in right ascension. The combined image of the two components, which are separated about $0^{\prime \prime} .4$, appears round. This is a binary with a period of 77 years, (See). Russell finds for this star a hypothetical parallax of $\mathrm{o}^{\prime \prime}$.oI4.

	Date.	Hour Angle. h. m.	Obs.	$\begin{gathered} \text { Time in } \\ \text { Ioo Days, } \\ T . \end{gathered}$	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & \text { p. } \end{aligned}$	Res., v.	Measured by.
May	10, 1915...	-0 18	P .	-5.50	-0.79	+0.024	. 9	0.000	Sm.
Jan.	8, 1916...	105	M.	-3.07	+0.80	. 054	. 8	+0.007	Sm. Be.
Apr.	30, 1916...	-0 7	M.	-1.94	-0.7I	. 073	1.0	-0.013	Sm.
May	II, 1916...	+0 2	M.	1.83	. 8 I	. 070	I. 0	. 010	Be.
May	12, 1916...	-0 17	P .	1.82	.8I	. 050	. 9	+0.010	Sm.
May	I3, 1916...	+o 6	Ma.	I. 8 I	. 82	. 059	. 5	. 001	Sm.

	Date.	Hour Angle. h. m.	Obs.	Time in ioo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Dec	9, 1916..	-0 13	M.	+0.29	+0.90	. 096	. 6	-0.001	I Be.
Dec	23, 1916.		M.	0.43	. 89	. 092	. 5	+0.004	4 Be.
Dec	30, 1916..	028	M.	0.50	. 86	. 102	. 5	-0.006	Sm.
Jan.	19, 1917..	018	Ma.	0.70	. 70	. 092	1.0	+0.005	5 Sm .
Apr	16, 1917..	-0 35	P.	+1.57	-0.54	. 099	. 7	-0.003	3 Be .
May	11, 1917...	013	P.	1.82	. 80	. 083	. 7	+0.013	3 Sm .
May	14, 1917...	0	P.	1. 85	. 83	. 090	. 7	. 006	6 Be .
Jan	5, 1918...	-0 9	M.	+4.21	+0.82	. 146	7	-0.014	4 Sm.
Feb	II, 1918...	-0 5	P.	4.58	. 43	. 130	. 7	+0.003	3 Sm.

Normal Equations:

$$
\begin{aligned}
+\mathrm{II} .2000 c-2.5590 \mu-\mathrm{I} .2590 \pi & =+0.9125 \\
+80.7848+9.0348 & =+0.648 \mathrm{I} \\
+6.6369 & =+0.0361 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .085 . \\
& \mu=+\mathrm{o}^{\prime \prime} .046 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .038 \pm \mathrm{o}^{\prime \prime} .01 \mathrm{II} .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} .025$.

Comparison Stars.

No.	X.	Y	Dependence.	Diameter.	B. D. No.
2	-120.8	+192.9	+0.222	0.40	
4	10.1	-204.5	.368	0.36	$+41^{\circ} .2199$
7	+70.6	+255.9	.146	0.46	
8	76.3	-18.6	.264	0.36	
π	0.0	0.0		0.62	$+42^{\circ} .2214$

No. 25. B.D. $+28^{\circ} .2106$. Bradley $1646=9$ Comae Berenices. ($12^{\mathrm{h}} 14^{\mathrm{m}} .5$; $+28^{\circ} 43^{\prime}$.) Mag. 6.30. $\quad \mu=-0^{\mathrm{s}} .015 \mathrm{I}$; - $0^{\prime \prime} .14^{2}$. Spectrum F.
The measures are in right ascension. No other parallaxes have been published.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	Ioo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
			ured by.				

Jan. 8, 1916... to 22 M. $-2.38+0.87-0.060$. $7-0.016 \mathrm{Sm}$.
Jan. 14, 1916... o 16 Ma. 2.32 . 86 . 085 . 5 +0.008 Be.
Feb. 7, 1916... -I 16 S. 2.08 . 66 . 079 1.0 -0.002 Be.

	Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days, T.	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & \text { p. } \end{aligned}$	Res., v.	Measured by.
May	II, 1916.	-0. 4	M.	-1.14	$\bigcirc .68$.II3	. 6	+0.010	Be.
May	12, 1916...	to 15	P.	I.13	. 70	.110	. 5	. 007	Be.
May	13, 1916...	0 16	Ma.	1.12	. 70	. 094	1.0	-0.009	Be .
May	26, 1916...	014	P.	0.99	. 82	.II3	1.0	. 008	8 Be .
Dec.	23, 1916.	$\bigcirc 1$	M.	+1.12	+0.90	.117	5	+0.010	Be
Jan.	26, 1917...	027	Ma.	1.46	. 75	.114	. 9	. 003	Sm.
Feb.	12, 1917...	+o 14	M.	1. 63	. 59	. 105	. 5	-0.009	Be.
Feb.	12, 1917...	- 54	M.	1.63	. 59	. 118	. 9	$+0.004$	Be.
May	17, 1917...	+0 20	M.	+2.57	-0.73	I30	5	-0.006	Be.
May	30, 1917...	049	P.	2.70	. 84	. 32	1.0	. 006	6 Be .

Normal Equations:

$$
\begin{aligned}
+9.6000 c-0.1240 \mu+0.1670 \pi & =- \text { 1.0101. } \\
+31.4931-1.7336 & =-0.2780 \\
+5.3907 & =+0.0529 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} . \mathrm{ro6} . \\
& \mu=-\mathrm{o}^{\prime \prime} .04 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=+\mathrm{o}^{\prime \prime} .048 \pm \mathrm{o}^{\prime \prime} .01 \mathrm{II} .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .025$.

Comparison Stars.

No.	X.	Y	Dependence.	Diameter.	B. D. No.
2	-28.8	-178.8	+0.238	0.69	$+28^{\circ} .2105$
3	81.2	82.8	.332	0.90	$+28^{\circ} .2103$
4	+42.4	+202.0	.327	0.53	
6	195.2	38.0	.103	0.43	
π	0.0	0.0		0.66	$+28^{\circ} .2106$

No. 26. B.D. $+26^{\circ} .2345$. $\Sigma \leq 1639=68$ Comae Berenices. ($12^{\text {b }} 19^{m} \cdot 4 ;+26^{\circ} 8^{\prime}$.) Mag. 6.7-7.9. Spectrum A_{5}.
The measures are in right ascension. This is a binary of long and uncertain period. The combined image of the components was sensibly round. Russell finds a hypothetical parallax of $\mathrm{O}^{\prime \prime} \mathrm{OI} 3$ for this star.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	Ioo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.	T.	P.	m.	p.	v.	ured by.

May 6, 1915.. -0 10 M. $-5.95-0.60+0.040 \quad .6+0.015$ Be. May 23, 1915... to 27 M. 5.78 . 78 . 044 . 7 .012 Be .

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days, T.	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & p . \end{aligned}$	Res., v.	Measured by.
Feb	3, 1916.	-0 27	P.	-3.22	$+0.70$. 048	1.0	-0.007	Be.
May	II, 1916...	+10	M.	-2.24	-0.67	. 057	. 9	-0.013	Be.
Jun	I, ì9I6..	045	M.	2.03	. 85	. 043	. 9	$+0.002$	Be.
Jan.	19, 1917...	-0 29	Ma.	+0.29	$+0.82$. 032	. 5	-0.004	Be.
Jan.	19, 1917. :	+0 7	Ma.	0.29	. 82	. 034	1.0	. 006	Be.
Feb	24, 1917.	-0 34	M.	0.65	. 44	. 036	. 5	. 007	Be.
Feb	24, 1917.	+06	M.	0.65	. 44	. 023	1.0	+0.006	Be.
May	10, 1917...	+057	M.	+1.40	-0.66	. 042	1.0	-0.009	Be.
Jan	5, 1918...	+0 I	M.	$+3.80$	+0.89	. 008	. 5	+0.008	Sm.
Jan	5, 1918..	04 I	M.	3.80	. 89	. 010	. 8	. 006	Sm.
Feb	13, 1918...	-0 5	Ma.	4.19	. 59	. 008	. 5	. 009	Sm.
Feb	15, 1918...	015	Ma.	4.21	. 56	. 014	1.0	. 003	Sm.

Normal Equations:

$$
\begin{aligned}
10.9000 c-0.6240 \mu+1.6680 \pi & =+0.3558 \\
+ \text { III.2145 }+13.7995 & =-0.4476 \\
+5.438 \mathrm{r} & =-0.0199 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .033 . \\
& \mu=-\mathrm{o}^{\prime \prime} .014 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=-\mathrm{o}^{\prime \prime} .028 \pm \mathrm{o}^{\prime \prime} .014 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .026$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
1	-64.4	+206.0	+0.380	1.3 I	$+26^{\circ} .2343$
2	+94.0	65.0	.173	0.58	$+26^{\circ} .2346$
3	101.6	-17.6	.156	0.87	$+26^{\circ} .2347$
4	-26.4	298.0	.291	0.63	$+25^{\circ} .2503$
π	0.0	0.0		0.86	$+26^{\circ} .2345$

No. 27. B.D. $+10^{\circ}$.2468. 33 Virginis $=\operatorname{Br}$ 1706. $\quad\left(12^{\mathrm{h}} 4 \mathrm{I}^{\mathrm{m}} \cdot 3\right.$; $+10^{\circ} 6^{\prime}$.) Mag. 5.86. $\mu=+0^{8} .0184$; - $0^{\prime \prime} .456$. Spectrum K.

The measures are in longitude. Other published parallaxes are by :

$$
\begin{aligned}
& \text { Chase, }-\mathrm{o}^{\prime \prime} . \mathrm{Io} \pm \mathrm{o}^{\prime \prime} . \mathrm{oI} 6 . \\
& \text { Adams, } \mathrm{o}^{\prime \prime} . \mathrm{O} \text {. }
\end{aligned}
$$

PROC. AMER. PHIL. SOC., VOL. LIX, h, MARCH 3I, 1920.

	Date.	Hour Angle. h. m	Obs.	Time in 100 Day T.	Parallax , Factor, P.	Solution, m.	Wt., p.	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
May	19, 1912.	+o 34	B.	-4.41	-0.810	+0.152	. 8	-0.004	4 S.
May	27, 1912	16	B.	4.33	. 885	. 157	. 9	. 012	2 S
Feb.	4, 1913.	-0 12	B.	-1.80	+0.751	+0.064	1.0	-0.009	9 S.
Feb.	6, 1913..	06	B.	1.78	. 729	. 061	. 7	. 007	7 S.
Feb.	7, 1913.	+o 49	M.	1.77	. 716	. 059	. 5	. 005	5
Feb.	14, 1913.	- 34	M.	1.70	. 629	. 043	. 8	+0.010	- S.
Feb.	25, 1913.	07	B.	1.59	. 472	. 045	.9	. 004	4 S.
May	3, 1913...	-0 2I	M.	-0.92	-0.613	+0.039	7	-0.008	S.
May	8, 1913..		M.	0.87	. 679	. 008	. 9	+0.022	2 S.
May	14, 1913..	-0 36	B.	0.8I	.751	. 014	. 9	. 014	4 S
June	2, 1913	+o 16	B.	0.62	. 929	. 003	. 4	. 020	S.
Jan.	5, 1914.	+o 35	M.	+1.55	+0.969	-0.052	. 9	-0.006	S.
Feb.	1, 1914..	- 27	P.	1.82	. 786	. 070	.9	+0.004	4 S.
Feb.	7, 1914...	-0 14	S.	1.88	. 720	. 069	1.0	. 001	S.
Feb.	17, 1914...		M.	1.98	. 592	. 070	. 9	0.000	S.
Feb.	24, 1914..	+o 7	P.	2.05	.491	. 078	. 9	+0.006	6 S
May	2, 1914...	+o 6	M.	+2.72	-0.596	-0.099	1.0	+0.008	8 S.
May	14, 1914...	- 54	M.	2.84	. 749	. 097	. 9	. 003	3 S .
May	15, 1914...	019	P.	2.85	. 760	. 094	. 9	0.000	S.
May	25, 1914...	024	S.	2.95	. 862	. 064	. 9	-0.033	3 S.

Normal Equations:

$$
\begin{aligned}
+16.800 c+2.485 \mu-0.442 \pi & =-0.118 \\
+91.850+1.769 & =-3.074 \\
+8.971 & =-0.093
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .002 \\
& \mu=-\mathrm{o}^{\prime \prime} .156 \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=-\mathrm{o}^{\prime \prime} .018 \pm \mathrm{o}^{\prime \prime} .012
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .037$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
I	+61.7	-98.0	+0.949	0.70	$+10^{\circ} .2467$
2	-58.2	12.8	-0.199	0.62	$+10^{\circ} .2471$
3	3.5	+110.8	+0.250	0.42	$+10^{\circ} .2472$
π	+69.3	-62.7		0.38	$+10^{\circ} .2468$

No. 28. B.D. $+17^{\circ}$.26II. β 800. ($13^{\mathrm{h}} 1 \mathrm{I}^{\mathrm{m}} \cdot 9 ;+17^{\circ} 33^{\prime}$.)

$$
\text { Mag. 7.0-10. } \quad \mu=+0^{9} .0445 ;-0^{\prime \prime} .269
$$

The measures were in longitude. This is a binary star whose large proper motion and large orbital motion indicates that it is comparatively near to us. The measures were made on the principal component. Adams found a parallax of this star spectroscopically to be o".087.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	Iou Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
			ured by				

$\begin{array}{llllllrrrrrr}\text { June } & 4,1915 \ldots & \text { to } & 3 & \mathrm{P} . & -4.28 & -0.75 & +0.025 & .7 & -0.001 & \mathrm{Be} . \\ \text { June } & 5,1915 \ldots & 0 & 9 & \mathrm{Ma} . & 4.27 & .77 & .023 & .8 & +0.001 & \mathrm{Be} .\end{array}$
Feb. 3, 1916... -0 3I P. $-1.84+0.83$. 134 1. $0+0.001$ Be.
Apr. 30, 1916... +0 10 S. $-0.97-0.35 \quad .142 \quad .5+0.007$ Be.
May 26, 1916... 027 P. 0.71 . 68 . 167 . $5-0.014$ Be.
June I, 1916... 0 48 M. 0.65 . 73 . $147 \quad .7$ +0.008 Be.
Jan. 26, 1917... $-038 \mathrm{Ma} .+1.74+0.87$. 255 . 5 +о.oro Be.
Jan. 26, 1917... 0 0 Ma. 1.74 . 87 . 264 . 9 .001 Be.
Feb. 12, 1917... to 55 M. 1.91 .75 . 269 . 9 0.000 Be.
Mar. 12, 1917... 028 M. 2.19 .41 .283 . $6-0.009$ Be.
Mar. 12, 1917... I I3 M. 2.19 . 41 . 280 . 5 . 006 Be.
May 30, 1917... o 35 P. $+2.98-0.72 .282 \quad .8+0.003$ Be.
Normal Equations:

$$
\begin{aligned}
+8.4000 c-0.5990 \mu+0.4310 \pi & =+1.5699 . \\
+51.7150+6.7732 & =+1.8534 . \\
+4.3880 & =+0.3910 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .189 . \\
& \mu=+\mathrm{o}^{\prime \prime} .169 \pm 0^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .070 \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e. unit weight $\pm \mathrm{o}^{\prime \prime}$. .oI8.

Comparison Stars.

| | | | | Dependence. | Diameter. |
| :---: | ---: | ---: | ---: | ---: | ---: |\quad B. D. No.

No. 29. B.D. $+35^{\circ} .2462$. O¿ 26 . $\quad\left(13^{\mathrm{h}} 28^{\mathrm{m}} \cdot 3+35^{\circ} 25^{\prime}\right.$.)
Mag. 7.2-7.7.
This is a binary star. The combined image of the components, which is round, was bisected in the measurements. The measures are in right ascension. No other parallax of the star has been published.

	Date.	Hour Angle. h. m.	Obs.	$\begin{gathered} \text { Time in } \\ \text { yoo Days, } \\ T . \end{gathered}$	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & \text { p. } \end{aligned}$	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Mar.	3, 1915	+o 50	Ma.	-7.48	+0.61	-0.060	. 5	+0.006	Be.
Mar.	12, 1915	- 8	M.	7.39	. 49	. 054	. 8	-0.002	Be.
Feb.	7, 1916.	+o 15	S.	-4.07	+0.83	. 050	. 8	-0.0	$\mathrm{Be} .$ $\mathrm{Sm} \text {. }$
Mar.	23, 1916.	026	P.	3.62	. 32	. 062	. 9	. 004	Be. Sm.
June	12, 1916...	+0 20	P.	-2.81	-0.79	. 088	1.0	+0.005	Be.
June	18, 1916...	055	S.	2.75	. 84	. 090	. 5	. 006	Be.
Mar.	3, 1918...	-0 36	P.	+3.48	+0.60	. 086	. 8	+0.012	Sm.
Mar.	3, 1918...	110	P.	3.48	. 60	. 070	. 8	-0.004	Sm.
Mar.	15, 1918...	+o 55	Ma.	3.60	. 44	. 084	1.0	+0.007	Sm.
May	17, 1918...	+o 10	D.	+4.23	-0.50	. 080	1.0	-0.012	Sm.
May	31, 1918...	0	D.	4.37	. 68	. 103	. 5	$+0.009$	Sm.
June	7, 1918...	- 45	P.	4.44	. 74	. 096	. 9	. 001	Sm.
June	19, 1918...	113	D.	4.56	. 85	. 090	. 6	-0.007	7. Sm.

Normal Equations:

$$
\begin{aligned}
+10.1000 c+1.9640 \mu-0.1770 \pi & =-0.7811 \\
+198.3845-9.5071 & =-0.6450 \\
+4.1754 & =+0.0908
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .077 \\
& \mu=-\mathrm{o}^{\prime \prime} .008 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .067 \pm \mathrm{o}^{\prime \prime} .012
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} .023$.

Comparison Stars.

| No. | X | | | Dependence. | Diameter. |
| :--- | ---: | ---: | :---: | :---: | :---: |\quad B. D. No.

No. 30. B.D. $+30^{\circ} .2653$. η Coronae Borealis $=\Sigma 1937$.

$$
\begin{gathered}
\left(15^{\mathrm{h}} 19^{\mathrm{m}} . \mathrm{I} ;+30^{\circ} 39^{\prime} .\right) \text { Mag. } 5.5^{8-6.08 .} \mu=+0^{\mathrm{s}} . \text { oIox; } \\
-0^{\prime \prime} .198 . \text { Spectrum G. }
\end{gathered}
$$

This is a binary system with a period of 41.5 years. In making the measures the combined image of the components was bisected. It seemed perfectly round. The measures are in right ascension. Other parallaxes of this star published are:

Slocum, (Photographic), $+\mathrm{o}^{\prime \prime} .073 \pm \mathrm{o}^{\prime \prime} .014$.
Russell, (Hypothetical), $+\mathrm{o}^{\prime \prime} .060$.
Adams, (Spectroscopic), $+\mathrm{o}^{\prime \prime} .069$.

Normal Equations:

Solution:

$$
\begin{aligned}
+10.2000 c-3.1690 \mu+0.8600 \pi & =+0.4583 \\
+89.4797+1.4805 & =+0.8298 \\
+5.5064 & =+0.1559
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .047 \\
& \mu=+\mathrm{o}^{\prime \prime} .050 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .085 \pm \mathrm{o}^{\prime \prime} .008 .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} . \mathrm{oI} 8$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	+133.8	+144.5	+0.34I	0.60	$+31^{\circ} .273 \mathrm{I}$
3	230.1	112.9	. 150	0.68	$+30^{\circ} .2654$
6	101.0	-125.6	. 039	0.47	
12	-178.9	I30.5	. 470	0.40	
π	0.0	0.0		0.97	$+30^{\circ} .2653$

No. 3r. B.D. $+2^{\circ} \cdot 3$ II8. λ Ophiuchi $=\Sigma 2055$. $\quad\left(16^{\mathrm{h}} 25^{\mathrm{m}} \cdot 9\right.$; $+2^{\circ}$ 12'.) Mag. 3.85. $\quad \mu=-0^{8} .0032$;-0" ${ }^{\prime \prime} .084$. Spectrum A.
The measures are in longitude. This is a binary of long period. The combined image of the two components is very slightly elongated. In the measures this combined image was bisected. Other published parallaxes are:

Lee-Joy-Van Biesbroeck, (Photographic) $+\mathrm{o}^{\prime \prime} .018 \pm \mathrm{o}^{\prime \prime} .003$. Schlesinger, (Photographic),
$-0^{\prime \prime} .010 \pm 0^{\prime \prime} .008$.
Russell, (Hypothetical),
$+0^{\prime \prime} .024$.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days T.	Parallax , Factor, P.	Solution, m.	Wt., p.	Res., v.	Measured by
Apr.	14, 1915	-0 32	Ma.	-3.16	+0.645	-0.028	1.0	+0.003	Be.
Apr.	15, 1915.	- 28	P.	3.15	. 632	.021	. 8	-0.003	Be.
July	8, 1915...	+o 56	Ma.	-2.31	-0.671	. 026	1.0	-0.003	Be.
July	9, 1915..	-0 9	M.	2.30	. 684	. 023	I. 0	0.000	Be.
July	14, 1915...		M.	2.25	. 745	. 022	. 8	-0.001	Be.
July	16, 1915...	+o 13	M.	2.23	. 767	. 022	. 9	. 001	Be
Mar.	23, 1916...	- 28	P.	+0.28	+0.871	. 024	1.0	-0.002	2 Be .
June	29, 1916...	014	S.	+1.26	-0.561	. 019	. 6	-0.006	Be.
July	7, 1916..	-0 30	S.	1.34	. 668	. 028	1.0	+.004	4 Be .
Apr.	13, 1917...	+o 14	Ma.	+4.14	+0.650	. 024	1.0	-0.003	Be.
Apr.	16, 1917...	- 8	M.	4.17	.611	. 030	. 9	+0.004	4 Be .
Apr.	16, 1917...	to 19	M.	4.17	.6II	. 027	1.0	. 001	I Be.

Normal Equations:

$$
\begin{aligned}
+11.0000 c+0.3420 \mu+0.1866 \pi & =-0.2726 \\
+90.0804+8.8293 & =-0.0450 \\
+5.1526 & =-0.0116
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .025 . \\
& \mu=-\mathrm{o}^{\prime 2} .015 \pm \mathrm{o}^{\prime \prime} .001 \\
& \pi=-\mathrm{o}^{\prime \prime} .037 \pm \mathrm{o}^{\prime \prime} .005 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.oIo.

Comparison Stars.											
No.								Y.	Dependence.	Diameter.	B. D. No.
1	+28.8	-164.8	+0.275	0.80	$+2^{\circ} .3119$						
2	-134.4	13.6	.245	0.81	$+2^{\circ} .3115$						
4	151.1	+212.4	.266	0.60	$+2^{\circ} .3124$						
5	+215.2	-10.4	.214	0.75	$+2^{\circ} .3114$						
π	0.0	0.0		0.95	$+2^{\circ} .3118$						

No. 32. B.D. $+32^{\circ} .2896$. 7^{2} W Herculis. ($17^{\mathrm{h}} 16^{\mathrm{m}} \cdot 9 ;+32^{\circ} 36^{\prime}$.)
Mag. 5.36. $\mu=+o^{5} .0099$; $\mathrm{I}^{\prime \prime} .053$. Spectrum G.
This is B. G. C. 7976. The brighter component only was measured. Other published parallaxes of this star:

Flint, (Transits),
$+\mathrm{o}^{\prime \prime} .09 \pm \mathrm{o}^{\prime \prime} .04 \mathrm{I}$.
Chase, (Heliometer), $\quad+\mathrm{o}^{\prime \prime} .14 \pm \mathrm{o}^{\prime \prime} .036$.
Schlesinger, (Photometric), $+\mathrm{o}^{\prime \prime} .068 \pm \mathrm{o}^{\prime \prime} .009$.
Adams, (Spectroscopic), $\quad+\mathrm{o}^{\prime \prime} .120$.
The measures are in longitude.

Date. Angle. Obs. Ioo Days, Factor, Solution, Wt., Res., Meas-
Hour Time in Parallax h. m. $\quad T . \quad P$. m. p. i^{\prime}. ured by.

July 25, 1915... to 30 M. $-7.90-0.754-0.126$. $9-0.001 \mathrm{Be}$.
Apr. 29, 1916... to 47 M. $-5.1 \mathrm{II}+0.568-0.07 \mathrm{I}$. $9 \quad 0.000 \mathrm{Be}$. May I, 1916... $-12 \mathrm{~S} . \quad 5.09 \quad .54 \mathrm{I} \quad .070 \quad .7-0.001 \mathrm{Be}$.

July 7, 1916... -029 W. $-4.42-0.530-0.086 \quad .6+0.010$ Be.
July II, 1916... to 17 S. 4.38 .587 .084 . 8 . 007 Be .
Aug. 19, 1917... to 38 M. $-.034-0.965-0.021 \quad 1.0-0.005 \mathrm{Sm}$.
Aug. 26, 1917... -025 M. 0.27 .992 . 028 . 5 +0.002 Sm.
Aug. 27, 1917... to 49 M. 0.26 . 995 . 019 . $9-0.007 \mathrm{Sm}$.
May 2, $1918 \ldots-50$ P. $+2.22+0.533+0.044 \quad .7-0.015 \mathrm{Sm}$. May 2, 1918... -0 10 P. 2.22 . 533 . 034 . 7 . 005 Sm .

Date.
Hour Time in Parallax

Angle. Obs. 100 Days, Factor,	Solution, Wt., Res., Meas-			
h. m.	T.	P.	m.	$p .0$

July	25, 1918...	+1 2	D.	+3.06	-0.756	+0.024	. 9	-0.001	Sm
July	26, 1918.	+1 7	M.	3.07	. 768	. 013	. 6	+0.010	Sm.
Apr.	13, 1919.	-0 10	P.	+5.68	+0.776	+0.079	9	+0.001	Sm
Apr.	19, 1919	to 39	D.	5.74	. 707	. 072	.	. 08	Sm
Apr.	22, 1919..	-0 41	P.	5.77	. 669	. 078	0	. 01	

Normal Equations:

$$
\begin{aligned}
+12.1000 c+2.1890 \mu-1.2534 \pi & =-0.0921 \\
+241.3464+15.0235 & =+3.4880 \\
+6.5207 & =+0.3057
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .009 . \\
& \mu=+\mathrm{o}^{\prime \prime} .064 \pm \mathrm{o}^{\prime \prime} .001 \\
& \pi=+\mathrm{o}^{\prime \prime} .064 \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{ozo}$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
3	-168.5	-51.5	+0.313	0.32	
6	+191.9	+29.1	.233	0.50	$+32^{\circ} .2901$
8	80.4	-42.0	.294	0.34	
12	-97.1	+136.0	.160	0.26	$+32^{\circ} .2894$
π	0.0	0.0		0.69	$+32^{\circ} .2896$

No. 33. B.D. -0°.3300. $\Sigma 2173$. ($17^{\mathrm{h}} 25^{\mathrm{m}} .2 ;-0^{\circ} 59^{\prime}$.)
Mag. 5.34. $\mu=-0^{3} .0083$; - $0^{\prime \prime}$ I75. Spectrum G.
The measures are in longitude. This is a binary with a period of 46 years. The combined image of the two components was sensibly round and was bisected in the measures.

Russell gives a hypothetical parallax of $+\mathrm{o}^{\prime \prime} .075$.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	100 Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v. ured by.

Apr. 24, 1912.. +07 B. $-12.07+0.713+0.059 \quad .9-0.001$ Be. May I8, 1912.. 025 B. II.83 .378 . $053 \quad 1.0 \quad 0.000$ Be.

May 15, 1915.. $0 \quad 0 \quad$ P. $-0.91+0.435-0.013 \quad 1.0-0.002$ Be.
May 19, I9I5... I 2 Ma. 0.87 . 373 . 014 . 5 . 002 Be.

	Hour		Time in Parallax				
Date.	Angle.	Obs.	roo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
	ured by.						

July 18, 1915... -58 M. $-0.27-0.578-0.033 \quad .5+0.003 \mathrm{Be}$. July 23, $1915 \ldots$ I 18 M. 0.22 . 653 . 035 . 8 . 003 Be. Aug. 13, 1915... to 7 P. 0.01 .878 . 030 . $8-0.006 \mathrm{Be}$. Aug. 14, 1915... I 6 Ma . 0.00 . 887 . 04 I 1.0 +0.005 Be .
Aug. 13, 1916... 04 I M. $+3.65-0.885-0.049 \quad .8-0.010 \mathrm{Be}$. Aug. 18, 1916... $0 \quad 3$ P. 3.70 . 923 . 068 1.0 +0.009 Be .

Apr. 16, 1917... о по M. $+6.11+0.803-0.062 \quad .7+0.006 \mathrm{Be}$.
May 12, $1917 \ldots-0 \quad 4 \mathrm{M} . \mathrm{M}^{2} .37$. 473 . 065 1.0 . 004 Be .
May 12, 1917... to 35 M. 6.37 . 473 .051 1.0 -0.010 Be.

Normal Equations:

$$
\begin{aligned}
+11.0000 c-0.7200 \mu-0.8870 \pi & =-0.2900 \\
+403.9814-9.1128 & =-2.6380 \\
+5.1534 & =+0.1365
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .026 . \\
& \mu=-\mathrm{o}^{\prime \prime} .030 \pm \mathrm{o}^{\prime \prime} .001 \\
& \pi=+\mathrm{o}^{\prime \prime} .05 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime}$.oIg.

Comparison Stárs.

No.	X.	Y	Dependence.	Diameter.	B. D. No.
1	+202.0	-20.0	+0.197	0.57	$-0^{\circ} .3306$
4	261.2	+111.6	.124	0.80	$-0^{\circ} .3307$
5	-66.8	206.0	.263	0.46	
9	I 32.0	-153.2	.416	0.76	$-1^{\circ} .3343$
π	0.0	0.0		0.53	$-0^{\circ} .3300$

No. 34. B.D. $+30^{\circ} \cdot 3$ 128. 99 b Herculis $=$ Clark $1_{5}=\mathrm{Br} .2278$. ($18^{\mathrm{h}} 3^{\mathrm{m}} .2 ;+30^{\circ} 33^{\prime}$.) Mag. 5.21. $\quad \mu=-0^{\mathrm{s}} .0073 ;+0^{\prime \prime} .063$. Spectrum F_{8}.
The measures were in longitude. This is a binary with a period of 63 years, (Aitken). The components are separated by $\mathrm{I}^{\prime \prime} \cdot 3$ but appear to be perfectly round, perhaps because the fainter component did not impress itself on the plate on account of the rotating sector.

Other parallaxes published for this star are:
Flint, $\quad+\mathrm{o}^{\prime \prime} .064 \pm \mathrm{o}^{\prime \prime} .022$, (Transits).
Russell, $+\mathrm{o}^{\prime \prime} .062$, (Hypothetical).
Schlesinger, $\mathrm{o}^{\prime \prime} .025 \pm \mathrm{o}^{\prime \prime} .006$, (Photographic).
Adams, $\dot{o}^{\prime \prime}$.IO5, (Spectroscopic).
$\begin{array}{cccccccc} & \text { Hour } & & \text { Time in Parallax } & & & \\ \text { Date. } & \text { Angle. } & \text { Obs. } & \text { Ioo Days, Factor, } & \text { Solution, } & \text { Wt., } & \text { Res., Meas- } \\ & \text { h. m. } & & T . & P . & m . & p . & v .\end{array}$
Aug. 18, 1915.. -0 13 P. $-3.88-0.815+0.069 \quad .7-0.001$ Be.
Aug. 23, 1915... 016 P. 3.83 .86I . $054 \quad .9$ +0.014 Sm.

Aug. 25, 1915... 0 II P. 3.81 .878 .065 .5 . 003 Be .
Apr. 30, 1916.. $-0 \quad 4$ P. $-1.32+0.779 \quad .070$ 1.0 +0.001 Be.
May 13, 1916... 0 10 M. 1.19 . 623 . 072 1.0 - .003 Be.
May 21, 1916... to 23 P. 1.11 .512 . 084 . 6 . 017 Sm.
Aug. 28, 1916.. to 6 P. $-0.12-0.907 .052 \quad .8-0.002$ Be.
Sept. 9, 1916... 027 Ma . 0.00 . 975 . 050 . 9 . 002 Be .
Sept. IO, 1916... 0 I5 P. 十0.01 .978 .056 .9 . 008 Sm.
May 12, 1917... to 52 M. +2.45 +0.640 .038 .7 +0.013 Sm.
July 23, 1917... to $16 \mathrm{M} .+3.17-0.494 \quad .043 \quad .7-0.006 \mathrm{Sm}$.
Aug. 28, 1917... $-0 \quad 2$ P. 3.53 .906 . 030 1.0 +0.002 Sm.
May 16, 1918... to 33 P. $+6.14+0.591 \quad .029 \quad .8$ 0.004 Sm.
Normal Equations:

$$
\begin{aligned}
+10.5000 c+1.0450 \mu-2.8895 \pi & =+0.5687 \\
+88.764 \mathrm{I}+4.5279 & =-0.3269 . \\
+6.6022 & =-0.1268
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .057 . \\
& \mu=-\mathrm{o}^{\prime \prime} .023 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .043 \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e .unit weight, $\pm \mathrm{o}^{\prime \prime} .024$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
1	-244.4	-50.0	+0.216	0.76	$+30^{\circ} .3119$
5	+49.6	140.0	.204	0.79	$+30^{\circ} .3129$
8	135.6	+162.0	.355	0.56	
10	-24.8	-80.4	.225	0.56	
π	0.0	0.0		0.65	$+30^{\circ} .3128$

No. 35. B.D. $+38^{\circ}$.3466. $\Sigma 24^{8}$ I (π) ; Secchi $2\left(\pi^{1}\right)$. ($19^{\text {h }} 7^{\mathrm{m}} \cdot 7$; $38^{\circ} 36^{\prime}$.) Mag. 8.0-8.0. $\mu=$ - $^{8} .0210$; - $0^{\prime \prime}$ 1о3.
This is a triple star. We have designated the component A by π, and by π^{1}, the components B C, (Secchi 2), which are separated by $0^{\prime \prime} .24$, and whose combined image is sensibly round. In measuring π^{1} we bisected the combined image of the components. The proper motion of A is not the same as that of B C. The measures are in longitude. The same comparison field was used for both components. Other parallaxes published are:

Russell, (Hypothetical), $+\mathrm{o}^{\prime \prime} .021$.
Mitchell, (Photographic), $\pi+\mathrm{o}^{\prime \prime} . \mathrm{OI} 9 \pm 0.010$.

$$
\pi^{1}+o^{\prime \prime} .046 \pm 0.011
$$

Table and Solutions for π.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days, T.	Parallax , Factor, P.	Solution, m.	Wt., p.	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
May	18, 1914.	+0 10	M.	-3.86	+0.876	$+0.080$. 7	+0.001	M.
June	I, 1914.	- 8	M.	3.72	. 736	. 077	. 5	. 002	M.
Sept.	2, 1914	-0 6	P.	-2.79	-0.675	+0.063	7	-0.001	M.
Sept.	5, 1914...	015	P.	2.76	. 712	. 055	. 5	+0.007	M.
May	9, 1915...	0 21	P.	-0.30	+0.942	+0.036	. 5	0.000	M.
May	19, 1915...	+o 15	Ma.	0.20	. 871	. 041	. 9	-0.006	M.
Aug.	23, 1915...	0 I	P.	+0.76	-0.546	+0.020	1.0	-0.003	M.
Sept.	10, 1915...	- 10	S.	0.94	. 773	. 009	. 9	+0.005	M.
Sept.	12, 1915...	to 5	P.	0.96	. 793	. 022	. 7	-0.008	M.
June	1, 1916...	-0 6	P.	+3.59	+0.730	-0.020	. 9	$+0.007$	M.
June	12, 1916...	0	P.	3.70	. 591	. 022	1.0	. 006	6 M .
June	13, 1916...	018	P.	3.71	. 577	. 006	. 9	-0.010	M.

Normal Equations:

$$
\begin{aligned}
+9.200 c+4.323 \mu+\mathrm{I} .377 \pi & =+0.220 \\
+66.383+3.137 & =-0.700 \\
+4.912 & =+0.018
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .029 \\
& \mu=-\mathrm{o}^{\prime \prime} .059 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .016 \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$. OI 9 .

Comparison Stars.

No.	\boldsymbol{X}	Y.	Dependence.	Diameter.	B. D. No.
\mathbf{I}	+166.0	+26.8	+0.279	0.57	$+38^{\circ} .3473$
5	74.4	-36.4	.305	0.54	$+38^{\circ} .3469$
7	-57.6	+94.4	.176	0.50	$+38^{\circ} .3463$
I3	243.2	-50.8	.240	0.44	
π	0.0	0.0			0.45

Table and Solutions for π^{\prime}.

	Hour		Time in	Parallax			
Date.	Angle.	Obs.	100 Days,	Factor,	Solution,	Wt.,	Res., Meas-
	h. m.	T.	P.	m.	p.	v. ured by.	

May 18, 1914... +о го M. $-3.64+0.876+0.038$ 1.0 +0.005 M .
June I, 1914... $0 \quad 8$ M. 3.50 .736 $034 \quad .5 \quad .008$ M.
Aug. 18, 1914... to 8 P. $-2.72-0.467+0.042 .6-0.007 \mathrm{M}$
Sept. 2, 1914... -06 P. 2.57 . 675 . 032 . 9 +0.002 M.
Sept. 5, 1914... 015 P. 2.54 .712 037 . 5 -0.003 M.
May 19, 1915... +015 Ma . +0.02 +0.871 +0.011 1.0 -0.012 M.
Aug. 23, 1915... +0 I. P. $+0.98-0.546-0.012 \quad 1.0+0.003 \mathrm{M}$.
Sept. 10, 1915... —0 10 S. 1.16 .773 .016 .5 .005 M.
Sept. 12, 1915... to 5 P. 1.18 . 793 . 007 . 5 -0.004 M.
June I, 1916... -06 P. $+3.8 \mathrm{i}+0.730-0.050 \quad$ 1.0 +0.004 M .
June 12، 1916... $0 \quad 2 \quad$ P. 3.92 .591 $051 \quad .5 \quad .004 \mathrm{M}$.
June 13, 1916... 0 I8 P. 3.93 . 577 . $044 \quad .5-0.003$ M.

Normal Equations:

$$
\begin{aligned}
& +8.5000 c-0.7000 \mu+0.8563 \pi=+0.0175 . \\
& +65.2354+2.3906=-0.7892 . \\
& \quad+4.3766=-0.0378 . \\
& c=+o^{\prime \prime} .00 \mathrm{I} . \\
& \mu=-0^{\prime \prime} .056 \pm 0^{\prime \prime} .002 . \\
& \pi=-0^{\prime \prime} .01 \mathrm{II} \pm 0^{\prime \prime} .009 .
\end{aligned}
$$

Solution:
p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.or8.

Comparison Stiars.

No.	\boldsymbol{X}	Y.	Dependence.	Diameter.	B. D. No.
I	+166.0	+26.8	+0.278	0.57	$+38^{\circ} .3473$
5	74.4	-36.4	.307	0.54	$+38^{\circ} .3469$
7	-57.6	+94.4	.172	0.50	$+38^{\circ} .3463$
I3	243.2	-50.8	.243	0.44	
π^{\prime}	0.4	0.6		0.45	$+38^{\circ} .3466$

```
No. 36. B.D. \(+27^{\circ} \cdot 339\) I. \(\sum 2525\). \(\left(19^{\mathrm{h}} 22^{\mathrm{m}} \cdot 5 ;+27^{\circ} 7^{\prime}\right.\).)
    Mag. 7.5. Spectrum G.
```

The measures are in longitude. This is a binary of long and uncertain period. The components are separated by about $0^{\prime \prime} .5$. The combined image of the components seemed slightly elongated. This image was bisected in the measures. Russell gives a hypothetical parallax of $0^{\prime \prime} .025$ for this star.

	Date.	Hour Angle. h. m.	Obs.	Time in Ioo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p	Res., v.	Meas- ured by
Aug.	25, 1915.	+0 10	P.	-3.59	$\bigcirc .557$	-0.155	. 8	+0.007	7 Sm .
Sept.	7, 1915.	-0 3	P.	3.46	. 725	. 143	1.0	-0.005	5 Be .
Sept.	13, 1915.	- 2	P.	3.40	.791	. 155	. 8	+0.008	8 Be .
May	20, 1916..	+o 14	M.	-0.90	-0.861	.115	. 5	-0.011	1 Sm .
June	I, 1916...	- 8	P.	0.78	. 738	. 126	. 5	. 000	- Be
June	4, 1916...	07	P.	0.75	. 702	.14I	. 6	+0.015	5 Sm .
June	12, 1916...	+o 19	S.	0.67	. 600	.117	. 8	-0.008	8 Be
Aug.	18, 1916...	+o 20	P.	-0.00	-0.465	. 116	. 9	-0.008	8 Sm .
Aug.	25, 1916..	037	P.	+0.07	. 567	. 122	. 9	. 002	2 Be
Sept.	21, 1916...	052	M.	0.34	. 872	. 123	. 8	. 000	0 B
June	I, 1918...	-0 47	D.	+6.52	+0.743	. 083	1.0	+0.006	6 Sm .
June	8, 1918...	0 56	D.	6.59	. 660	. 074	. 9	-. 003	3 Sm .

Normal Equations:

$$
\begin{aligned}
+9.5000 c+1.9080 \mu-0.3921 \pi & =-\mathrm{I} .1519 . \\
+114.6285+13.4329 & =+0.5674 . \\
+4.5374 & =+0.1503 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .122 . \\
& \mu=+\mathrm{o}^{\prime \prime} .03 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .003 \\
& \pi=+\mathrm{o}^{\prime \prime} .013 \pm \mathrm{o}^{\prime \prime} .013 .
\end{aligned}
$$

p. e. unit weight, $\pm{ }^{\prime \prime} .023$.

Comparison Stars.

No.	X.		Dependence.	Diameter.	B. D. No.
I	-163.6	-171.2	+0.332	0.59	$+26^{\circ} \cdot 3550$
3	+72.8	76.8	.210	0.40	
5	147.6	+109.6	.193	0.44	
6	41.2	196.4	.265	0.39	
π	0.0	0.0		0.63	$+27^{\circ} \cdot 3391$

No. 37. B.D. $+50^{\circ}$.2847-8. 16 Cygni. ($19^{\mathrm{h}} 39^{\mathrm{m}} \cdot \mathrm{I} ;+50^{\circ} 18^{\prime}$.)
Mag. 6.26-6.37. $\quad \mu=\left\{\begin{array}{l}-0^{s} .0162 ;-0^{\prime \prime} .152 . \\ -0^{s} .0138 ;-0^{\prime \prime} .156 .\end{array} \quad\right.$ Spectrum F.
The measures were in longitude. This is a star of the 6r Cyngi type. Other parallaxes published are:

Slocum and Mitchell, Preceding, $+\mathrm{o}^{\prime \prime} .043 \pm \mathrm{o}^{\prime \prime} .008$.
Following, $+\mathrm{o}^{\prime \prime} .028 \pm \mathrm{o}^{\prime \prime} .009$.
Adams,

Jost,
Preceding, $+\mathrm{o}^{\prime \prime} .063$.
Following, $+\mathrm{o}^{\prime \prime} .040$.

$$
+\mathrm{o}^{\prime \prime} .15 \pm \mathrm{o}^{\prime \prime} .03 \mathrm{I}
$$

The same comparison field was used for both components.
Table and Solutions for the Preceding Component of i6 Cygni.

	Hour		Time in	Parallax			
Date.	Angle.	Obs.	roo Days,	Factor,	Solution,	Wt.,	Res., Meas-
	h. m.		T.	P.	m.	p.	$v . \quad$ ured by.

Sept. 19, 1915 \ldots to 6 M. $-4.09-0.591-0.094 \quad 1.0+0.008$ M.
June 5, 1916... +o 16 S. - $.49+0.917$. $093 \quad .7-0.004$ M.
June 13, 1916... -0 9 P. 1.4I .85I 079 . 9 . 019 M.
June 30, 1916... 044 P. I. 24 . 663 .III 8 +o.010 M.
July 7, 1916... 059 S. 1.17 . 569 . 103 1.0 001 M.
Sept. 17, 1916... +о II M. $-0.45-0.573$.128 . $8+0.010$ M.
Sept. 19, 1916... $0 \quad 7$ M. 0.43 . 600 . 119 . 8 . 001 M.
Sept. 25, 1916... -0 42 P. 0.37 . 678 .103 $.8-0.016$ M.
Sept. 28, 1916... to 12 M. 0.34 . 715 .116 7 . 004 M.
Oct. 6, 1916... -0 I5 P. 0.26 . 803 . 123 . 9 +0.002 M.
June 17, 1917... $-0 \quad 6$ P. $+2.28+0.815 \quad .138 \quad .6+0.008 \mathrm{M}$.
June 17, 1917... to 8 P. 2.28 .815 .138 . $9 \quad .008$ M.
Oct. 2, $1917 \ldots$ to $8 \mathrm{M} .+3.35-0.757$. 150 1.0 -0.003 M .
Oct. 3, i917... - о по P. 3.36 .768 .I52 8 .001 M.
Normal Equations:

$$
\begin{aligned}
+ \text { II. } 7000 c & -0.5780 \mu-0.9367 \pi
\end{aligned}=-\mathrm{I} .3725 .
$$

Solution:
p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{oz} 8$.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
3	+69.2	+145.6	+0.296	0.50	
4	-98.8	128.4	.121	0.47	
7	188.4	-184.8	.184	0.50	$+49^{\circ} .3079$
10	+66.0	62.0	.399	0.60	$+50^{\circ} .2853$
π^{\prime}	0.0	0.0		0.71	$+50^{\circ} .2847$

Table and Solutions for the Following Component of i6 Cygni.
Hour Time in Parallax
Date. Angle. Obs. 100 Days, Factor, Solution, Wt., Res., Meas-

$$
\text { h. m. } \quad T . \quad P . \quad m . \quad p \text {. } \quad v \text {. ured by. }
$$

Sept. 19, 1915... to 6 M. $-4.09-0.59 \mathrm{I}^{\prime}-0.104$ 1.0 +0.004 M.
June 5, 1916... to $16 \mathrm{~S} .-1.49+0.917$.116 . 7 +0.001 M.
June 13, 1916... $-0 \quad 9 \quad$ P. 1.4 I . 85 I . $109 \quad .8-0.007 \mathrm{M}$.
June 30, 1916... 044 P. 1. 24 . 663 . $124 \quad .8$ +0.006 M.
July 7, 1916... 059 S. 1.17 . 569 . 114 . 9 -0.005 M.
Sept. 17, 1916... to II M. -0.45-0.573 .128 . $8-0.002$ M.
Sept. 19, 1916... $0 \quad 7$ M. 0.43 . 600 . $133 \quad .9$ +0.003 M.
Sept. 25, 1916... -042 P. 0.37 . 678 . $124 \quad .8-0.007$ M.
Sept. 26, 1916... 037 P. 0.36 . $691 \quad .133 \quad .8+0.002$ M.
Oct. 6, 1916... 0 15 P. 0.26 . 803 . 131 . $9-0.001$ M.
June 17, 1917... -0 6 P. $+2.28+0.815 \quad .153 \quad .6+0.007 \mathrm{M}$. June 17, 1917.. to 8 P. 2.28 . 815 . 148 . 8 . 002 M .

Oct. 2, 1917... o $8 \mathrm{M} .+3.35-0.757$. 158 1.0 -0.003 M .
Oct. 3, 1917... - о 1о P. 3.36 . 768 . 166 . 5 +0.005 M.
Normal Equations:

$$
\begin{aligned}
+11.3000 c-1.6490 \mu-1.0421 \pi & =-1.4710 . \\
+47.0822-0.9547 & =-0.1719 . \\
+5.8749 & =+0.1666 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=-o^{\prime \prime} .13 \mathrm{I} . \\
& \mu=-\mathrm{o}^{\prime \prime} .03^{8} \pm \mathrm{o}^{\prime \prime} .002 . \\
& \pi=+\mathrm{o}^{\prime \prime} .018 \pm \mathrm{o}^{\prime \prime} .006 .
\end{aligned}
$$

p. e. unit weight. $\pm 0^{\prime \prime}$..OI4.

Comparison Stars.

| No. | x | | Y. | Dependence. | Diameter. |
| ---: | :---: | ---: | :---: | :---: | :---: |\quad B. D. No.

No. 38. B.D. $+34^{\circ} .3727$. O乏 387 . ($19^{\text {h }} 45^{\mathrm{m}} .0 ;+35^{\circ} 4^{\prime}$.) Mag. 6.9. $\mu=+o^{3} .0068 ;+0^{\prime \prime} .084$. Spectrum F_{2}.
This is a binary of long, uncertain period. The measures were made in longitude. Russell found for this star a hypothetical parallax of $\mathrm{o}^{\prime \prime} .022$.

Hour Time in Parallax
Date. Angle. Obs. Ioo Days, Factor, Solution, Wt., Res., Meas-
Sept. 7, 1914... -037 P. $-4.13-0.518-0.090 \quad .9$ to.008 M.
Sept. 8, 1914... 014 P. 4.12 . 595 . 090 . 5 . 008 M.
Sept. 9, 1914... 028 P. 4.1I . 609 . 079 . $5-0.003$ M.

Sept. 10, 1914... 036 P. 4.10 .621 072 . 9 .010 M.
June 22, 1915... to o M. -1.25 +0.632 .067 6 +o.011 M.
Sept. 10, 1915... +o 26 S. $-0.45-0.619$. 056 . 8 +0.002 M.
Oct. 3, 1915... $0 \quad 9 \quad$ S. 0.22 .871 043 1.0 -0.010 M.
June 1 , 1916... +023 P. $+2.20+0.858$. 034 1.0 +0.004 M .
June 4, 1916... 0 o P. 2.23 . $829 \quad .022 \quad .7-0.008$ M.
June 13, 1916... 0 II P. 2.32 .734 . 015 . 9 . 014 M
June 2I, 1916... 0 5 S. 2.40 . 634 . 037 . 5 +0.008 M.
June 22, 1916... -036 P. 2.41 . 620 . 033 . 7 . 004 M.
Sept. 25, 1916... +o 22 P. $+3.36-0.803$. 029 1.0 -0.003 M.
Sept. 28, 1916... 042 M. . 3.39 . 832 . 035 . 5 +0.009 M.
Normal Equations:

$$
\begin{aligned}
+10.5000 c+0.9390 \mu-1.0399 \pi & =-0.5093 \\
+85.7079+9.2814 & =+0.6305 . \\
+5.4813 & =+0.1379 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .049 . \\
& \mu=+\mathrm{o}^{\prime \prime} .035 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .015 \pm \mathrm{o}^{\prime \prime} .012 .
\end{aligned}
$$

p. e. unit weight,$\pm 0^{\prime \prime} .025$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
3	+168.2	-18.9	+0.219	0.50	$+34^{\circ} .3735$
9	-123.3	+43.6	.295	0.88	$+35^{\circ} .3809$
II	98.3	-79.7	.332	0.35	$+34^{\circ} .3722$
I5	+209.3	+115.9	.154	0.4 I	
π	0.0	0.0		0.82	$+34^{\circ} .3727$

No. 39. B.D. $+6^{\circ}$.4357. $\quad \beta$ Aquilae $=0 \Sigma 532$. $\quad\left(19^{h} 50^{m} \cdot 4\right.$; $+6^{\circ} 9^{\prime}$.) Mag. 3.90. $\quad \mu=+0^{5} .0023$; - $0^{\prime \prime} .483$.

Spectrum K.

The measures are in longitude. This star is B. G. C. 9724. The distance between the components is $12^{\prime \prime} .08$ and their magnitudes are 3.4 and II. 3 respectively. The brighter component only was recorded. Burnham says, "But little change in either angle or distance but components have a large common proper motion."

Other published parallaxes are:
Mitchell, (Photographic), $+\mathrm{o}^{\prime \prime} .066 \pm \mathrm{o}^{\prime \prime} .0 .1$ I.
Adams, (Spectroscopic), $+\mathrm{o}^{\prime \prime} .072$.
Russell, (Hypothetical), $+\mathrm{o}^{\prime \prime} .053$.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days T.	Parallax Factor, P.	Solution, m.	Wt., p	Res., v.	Measured by.
Sept.	29, 1915	+o 33	P.	-3.1	-0.904	+0.097	. 5	-0.002	2 Be .
Oct.	10, 1915.	029	S.	3.05	. 967	. 106	. 8	. 012	Sm.
Oct.	12,	- 4	P.	3.03	. 974	. 092	. 9	$+0.002$	Sm.
Oct.	24, 1915	+o 53	M.	2.91	. 994	. 099	. 8	-0.006	6 Be .
June	I, 1916.	+o 39	P.	-0.70	+0.772	II2	. 5	0.001	m.
June	4, 1916..	016	P.	0.67	. 738	. 096	. 6	. 016	Sm.
June	5, 1916...	048	S.	0.66	. 728	. 116	1.0	-0.004	4 Be .
June	12, 1916...	- 34	S.	0.59	. 640	.III	. 7	. 000	- Be.
Sept.	10, 1916...	+o 44	P.	+0.31	-0.732	. 088	. 5	+0.001	Sm.
Oct.	6, 1916...		P.	0.57	. 952	. 079	. 5	. 006	Sm.
Oct.	7, 1916...	-0 18	Ma.	0.58	. 956	. 073	. 9	. 012	2 Be .
June	8, 1918...	+o 2	D.	$+6.67$	+0.697	. 094	1.0	-0.002	2 Sm .
June	8, 1918..	018	D.	6.67	. 697	. 097	1.0	. 005	5 Sm .

Normal Equations:

$$
\begin{aligned}
+9.7000 c & +3.4020 \mu-1.2010 \pi
\end{aligned}=+0.9428 .
$$

Solution:

$$
\begin{aligned}
& c=+o^{\prime \prime} . \text { I00. } \\
& \mu=-o^{\prime \prime} .012 \pm 0^{\prime \prime} .003 \\
& \pi=+o^{\prime \prime} .067 \pm 0^{\prime \prime} .01 \mathrm{I} .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .022$.

Comparison Stars.

No.	X.	Y	Dependence.	Diameter.	B. D. No.
I	+98.0	-174.4	+0.265	0.87	$+5^{\circ} .4344$
4	-110.4	+144.0	.33 I	0.94	$+6^{\circ} .4362$
5	-114.8	92.0	.243	0.46	
14	214.4	-147.6	.161	0.60	$+5^{\circ} .4332$
π	0.0	0.0		0.77	$+6^{\circ} .4357$

No. 40. B.D. $+20^{\circ} \cdot 4452-3 . \quad \Sigma 2637=\Theta$ Sagittae. $\quad 20^{\mathrm{h}} 5^{\mathrm{m}} \cdot 5$;

$$
\left.+20^{\circ} 37^{\prime} .\right) \text { Mag. } 7.0-7.8-8.3 . \quad \mu=\left\{\begin{array}{l}
+0^{s} .0039 ;-0^{\prime \prime} .096 \\
+0^{s} 0036 ;-0^{\prime \prime} .112 . \\
-0^{s} .0003 ;-0^{\prime \prime} .010
\end{array}\right.
$$

This star is number 9955 in B. G. C. In the tables that follow I have used the designation given by Burnham. No other parallax of this star has been published. The measures were in longitude. The same comparison field was used for each of the three components.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., v.	Measured by.
Sept.	3, 1915...	to 34	S.	-3.39	-0.517	-0.081	. 7	-0.001	Be.
Sept.	7, 1915...	021	P.	3.35	. 574	. 082	. 9	0.000	Be
June	4, 1916...	+0 21	P.	-0.64	+0.832	. 068	1.0	$+0.004$	Sm.
June	13, 1916...	014	P.	0.55	. 737	. 062	. 5	-0.002	Be
June	22, 1916..	-0 21	P.	0.46	. 625	. 060	. 5	. 004	4 Be .
Sept.	25, 1916...	to 31	P.	+0.49	-0.800	. 064	1.0	-0.001	Be.
Oct.	5, 1916..	037	P.	0.59	. 889	. 068	1.0	+0.003	3 Sm .
Oct.	12, 1916...	041	M.	0.66	. 935	. 065	. 8	0.000	Sm.
une	1918	+0 2	M	6.60	-0.80	. 028		-0.002	

Normal Equations:

$$
\begin{gathered}
+6.8000 c-\mathrm{I} .6290 \mu-\mathrm{I} .3190 \pi=-0.451 \mathrm{I} . \\
+42.1021+3.4070=+0.3175 . \\
\quad+4.034 \mathrm{I}=+0.1173 . \\
\mathrm{c}=-\mathrm{o}^{\prime \prime} .064 . \\
\mu=+\mathrm{o}^{\prime \prime} .022 \pm 0^{\prime \prime} .00 \mathrm{r} . \\
\pi=+\mathrm{o}^{\prime \prime} .019 \pm 0^{\prime \prime} .004 .
\end{gathered}
$$

Solution:
p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .008$.

Comparison Stars.

No.	X	Y	Dependence.	Diameter.	B. D. No.
2	+126.6	+39.1	+0.478	1.11	$+20^{\circ} .4460$
4	-221.1	48.2	.336	0.81	$+20^{\circ} .4444$
12	101.1	-103.1	.041	0.40	
14	+205.7	119.8	.145	0.45	
A	11.8	+13.2		1.16	$+20^{\circ} .4453$

Table and Solutions for $\Sigma 2637$ B.
Hour Time in Parallax
Date. Angle. Obs. ioo Days, Factor, Solution, Wt., Res., Meas-

$$
\text { h. m. } \quad T . \quad P . \quad m . \quad p . \quad v . \text { ured by. }
$$

Sept. 3, $1915 \ldots+034$ S. $-4.53-0.517+0.002 \quad .6-0.008 \mathrm{Be}$. Sept. 7, 1915... 021 P. $4.49 \quad .574-0.001 \quad .9 \quad .005$ Be.

June 4, 1916... +021 P. $1.78+0.8320 .006 \quad .9+0.002 \mathrm{Sm}$. June 13, 1916... 014 P. 1. 69 .737 . 008 1.0 0.000 Be . June 22, 1916... $-021 \quad$ P. 1. 60 . 625 . 004 1.0 +0.005 Be .

Sept. 10, 1916... +13 P. $0.80-0.624$ +0.011 $8-0.001 \mathrm{Be}$.
Sept. 25, 1916... 031 P. 0.65 . 800 . 017 1.0 . 006 Be.

Oct. 5, 1916... 037 P. $0.55 \quad .889$.000 1.0 +0.011 Sm.
Oct. 12, 1916... 04 I M. 0.48 . 935 .008 . 5 . 003 Sm.
June $1,1918 \ldots 000$ D. $+5.49+0.865+0.040$ 1.0 0.000 Sm .
June 7, 1918... -0 18 Ma. 5.55 .807 .035 . 5 +0.005 Sm.
June 7, 1918... to 2 Ma. 5.55 . 807 . 047 . 9 - . 007 Sm .

Normal Equations:

$$
\begin{aligned}
+10.1000 c-0.4710 \mu+0.6231 \pi & =+0.1473 \\
+113.3401 & +12.7983=+0.5006 \\
& +5.8526=+0.0728
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .015 . \\
& \mu=+\mathrm{o}^{\prime \prime} .020 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .007 \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{ol} 8$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	+I 26.6	+39.1	+0.485	I.II	$+20^{\circ} .4460$
4	$-22 I . I$	48.2	.343	0.81	$+20^{\circ} .4444$
I2	IOI.I	-103.1	.034	0.40	
I4	+205.7	II9.8	.138	0.45	
B	IO.5	+15.4		0.53	

Table and Solutions for $\Sigma 2637$ C.

Normal Equations:

$$
\begin{aligned}
+10.4000 c-5.6080 \mu-0.3600 \pi & =-1.0787 \\
+108.4239+11.7693 & =+0.5991 \\
+5.9618 & =+0.0608
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .104 . \\
& \mu=-\mathrm{o}^{\prime \prime} .002 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .022 \pm \mathrm{o}^{\prime \prime} .01 \mathrm{II} .
\end{aligned}
$$

p. e. unit weight, $\pm 0^{\prime \prime} .024$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
2	+ I26.6	+39.1	+0.402	I.II	$+20^{\circ} .4460$
4	-221.1	48.2	.328	0.8 I	$+20^{\circ} .4444$
12	101.I	-103.1	.110	0.40	
14	+205.7	119.8	.160	0.45	
π	0.0	0.0		0.91	$+20^{\circ} .445^{2}$

No. 4I. B.D. $+43^{\circ} \cdot 3513$. Oミ 400. $\quad\left(20^{\mathrm{h}} 6^{\mathrm{m}} \cdot 9 ;=43^{\circ} 39^{\prime}\right.$.) Mag. 7.5-8.5.
The measures are in longitude. This is a binary with a period of 74.5 years (Burnham). The components are separated by $0^{\prime \prime} .31$. The combined image, which is sensibly round, was bisected in the measuring. Russell finds a hypothetical parallax of $0^{\prime \prime} .021$.

Normal Equations:

$$
\begin{aligned}
+9.600 c+4.970 \mu-0.552 \pi & =-0.967 \\
+50.951+7.979 & =+0.038 \\
+4.660 & =+0.100 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .100 . \\
& \mu=+\mathrm{o}^{\prime \prime} .001 \pm \mathrm{o}^{\prime \prime} .002 \\
& \pi=+\mathrm{o}^{\prime \prime} .043 \pm \mathrm{o}^{\prime \prime} .007 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.OI2.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
1	-200.0	+140.8	+0.152	0.6 I	$+43^{\circ} .3506$
2	124.0	-47.2	.354	0.54	$+43^{\circ} .3509$
5	+81.6	+33.6	.215	0.63	$+43^{\circ} .3517$
9	195.2	-50.4	.279	0.48	$+43^{\circ} .3521$
π	0.0	0.0		0.82	$+43^{\circ} .3513$

No. 42. B.D. $+15^{\circ} .4255 . \gamma$ Delphini. ($\left.20^{\mathrm{h}} 42^{\mathrm{m}} .0 ;+15^{\circ} 4^{\prime}.\right)$
Mag. A. 4.49. $\left\{\mu=\right.$ A. $-0^{\text {s.0023 }} ;$ - $^{\prime \prime}$. 204. Spectrum G_{5}.
B. 5.47. $\left\{\begin{array}{l}\mu= \\ \text { B. }-0^{8} .0014 ;-0^{\prime \prime} .194 .\end{array}\right.$

This star was measured in right ascension. The components have a common proper motion and some relative motion. Other published parallaxes are by

Russell, (Hypothetical), $+o^{\prime \prime} .045$.
Mitchell, (Photogrpahic), $\mathrm{A} .+\mathrm{o}^{\prime \prime} .07 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .009$.
B. $+\mathrm{o}^{\prime \prime} .063 \pm \mathrm{o}^{\prime \prime} .009$.

Adams, (Spectroscopic), $\quad+\mathrm{o}^{\prime \prime} .022$.
The same comparison field was used for both A and B.

Table and Solutions for A.

	Date.	Hour Angle. h. m.	Obs.	Time in roo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Sept.	13, 1915	-0 12	S.	-4.59	-0.65	-0.028	. 8	+0.013	M.
Sept.	14, 1915.	to 3	P.	4.58	. 66	. 013	1.0	-0.002	M.
Nov.	5, 1915...	110	M.	4.06	. 95	. 015	. 5	. 00	M.
June	13, 1916...	to 4	P.	-1.85	+0.70	. 023	. 5	+0.001	M.
June	21, 1916...	- 15	S.	1.77	. 60	. 022	.9	0.000	M.
June	30, 1916..	$\bigcirc 17$	Ma.	1.68	. 48	. 019	. 8	-0.003	M.
July	7, 1916...	- 20	W.	1.61	. 37	. 011	. 7	. 01	M.
Sept.	25, 1916...	+0 27	P .	-0.81	-0.78	. 022	1.0	+0.001	M.
Oct.	6, i916...	-0 II	P.	0.70	. 87	. 023	1.0	. 002	M.
Oct.	26, 1916...	+025	M.	0.50	. 96	. 029	. 5	. 008	M.
June	7, 1918...	-0 I	Ma.	+5.39	+0.77	. 032	. 5	-0.001	M.
June	15, 1918...	028	D.	5.47	. 68	. 038	. 8	+0.005	M.
July	I, 1918...	12	P.	5.63	. 47	. 023	. 5	-0.010	M.
July	2, 1918...	- 33	D.	5.64	. 46	. 031	. 9	. 002	M.

Normal Equations:

$$
\begin{aligned}
+10.4000 c-2.0690 \mu-0.6740 \pi & =-0.2424 \\
+\mathrm{I} 38.8869+14.8623 & =-0.1464 \\
+4.8674 & =0.0000
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .024 . \\
& \mu=-\mathrm{o}^{\prime \prime} .007 \pm \mathrm{o}^{\prime \prime} .002 . \\
& \pi=+\mathrm{o}^{\prime \prime} .007 \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$. oI 8 .

Comparison Stars.

No.	X.	Y	Dependence.	Diameter.	B. D. No.
2	+208.6	-12.2	+0.279	0.90	$+15^{\circ} .4258$
3	-127.2	22.7	.478	0.80	$+15^{\circ} .4248$
6	268.3	+113.5	.082	0.49	$+15^{\circ} .4244$
9	+153.0	30.6	.161	0.62	
A	0.0	0.0		1.06	$+15^{\circ} .4255$

Table and Solutions for B.
$\begin{array}{lcc:c} & \text { Hour } & \text { Time in Parallax } \\ \text { Date. Angle. Obs. roo Days, Factor, Solution, Wt., Res., Meas- }\end{array}$
h. m. $\quad T . \quad P$. m. p. \quad. ured by.

Sept. 13, 1915... -0 I2 S. $-4.47-0.65+0.107$. $5+0.018 \mathrm{M}$.
Sept. 14, 1915... to 3 P. 4.46 . 66 . $133 \quad .7-0.008$ M.

Nov. 5, 1915... I 10 M. 3.94 . 95 . 117 . 8 +0.009 M.
June 13, 1916... to 4 P. 1.73 +0.70 . 109 . 5 +0.013 M.
June 21, 1916... 0 15 S. .65 . 60 . 126 . $6-0.004$ M.
June 22, 1916... 025 P. 1.64 . 58 . 126 . 5 . 004 M.
June 30, 1916... 0 I7 Ma. 1.56 . 48 .II9 . $6+0.003 \mathrm{M}$.
July 7, 1916... 020 W. 1. 49 . 37 . 134 1.0 -0.012 M.
Sept. 25, 1916... +o 27 P. $0.69-0.78$.118 .5 +0.006 M.
Oct. 6, $1916 \ldots-0 \quad 6$ P. 0.58 . 87 . $136 \quad .9$ - 0.012 M.
Oct. 26, 1916... +o 30 M. 0.38 . 96 . 124 . 5 . 000 M.
June 7, 1918... -0 I $\mathrm{Ma} .+5.5 \mathrm{I}+0.77 \quad .127 \quad .5-0.008 \mathrm{M}$.
June 15, 1918... 028 D. 5.59 . 68 . 110 1.0 +0.009 M.
July I, 1918... I 2 P. 5.75 . 47 . $122 \quad .5$-0.002 M.
July 2, 1918... 033 D. 5.76 . 46 . 119 1. 0 +0.001 M.

Normal Equations:

$$
\begin{aligned}
+10.1000 c+2.3130 \mu+0.2180 \pi & =+1.2356 \\
+141.2385+14.6610 & =+0.2092 \\
+4.6696 & =+0.0138
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .122 . \\
& \mu=-\mathrm{o}^{\prime \prime} .002 \pm \mathrm{o}^{\prime \prime} .003 \\
& \pi=-\mathrm{o}^{\prime \prime} .008 \pm \mathrm{o}^{\prime \prime} .015 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{oz6}$.

Comparison Stars.

2	+208.6	-12.2	+0.276	0.90	$+15^{\circ} .4258$
3	-127.2	22.7	.483	0.80	$+15^{\circ} .4248$
6	268.3	+113.5	.084	0.49	$+15^{\circ} .4244$
9	+153.0	30.6	.157	0.62	
B	-2.3	$+\quad 0.0$		0.88	

No. 43. B.D. $+3^{\circ}$.4473. $\sum 2737=\epsilon$ Equulei. $\quad\left(20^{\mathrm{h}} 54^{\mathrm{m}} \cdot \mathrm{I}\right.$; $+3^{\circ} 55^{\prime}$.) Mag. 5.29. $\mu=-0^{5} .0084$; - $0^{\prime \prime}$.144. Spectrum F_{5}.
This is a triple system. The three components, called by Burnham, A (mag. 5.1), B (mag, 6.2), and C (mag. 7.1), have a common proper motion. A and B, separated by $o^{\prime \prime} .62$, form a binary of uncertain period. The measures were made by bisecting the combined image of these two components, which is sensibly round. The measures are in longitude. Other published parallaxes are:

$$
\begin{aligned}
& \text { Russell, (Hypothetical), }+\mathrm{o}^{\prime \prime} .022 . \\
& \text { Mitchell, (Photographic), }+\mathrm{o}^{\prime \prime} .043 \pm \mathrm{o}^{\prime \prime} . \text { oro. } \\
& \text { Adams, (Spectroscopic), }+\mathrm{o}^{\prime \prime} .038 .
\end{aligned}
$$

Mitchell found for $\mathrm{C} \cdot \mathrm{a}$ parallax of $\mathrm{o}^{\prime \prime} .002 \pm \mathrm{o}^{\prime \prime} .012$. We did not measure C because its images on our plates were very faint.

	Date.	Hour Angle. h. m.	Obs.	Time in roo Days, T.	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt., } \\ & \text { p. } \end{aligned}$	Res., v.	Measured by
Oct.	30, 1915	+o 13	Ma.	-3.55	-0.974	+0.132	. 8	-0.010	- Sm
Nov.	7, 1915	- 44	S.	3.47	. 989	. 113	1.0	+0.008	8 Be.
June	13, 1916...	+0 20	P.	-1.28	+0.825	. 100	. 5	+0.010	0
June	22, 1916.	-0 10	P.	1.19	. 727	. 106	. 5	. 003	3 Sm .
June	30, 1916.	+o 20	Ma.	I.II	. 627	. 1	. 7	-0.002	Be.
July	4, 1916...	- 50	M.	1.07	. 576	. 116	. 8	. 009	9
Sept.	28, 1916...	+o 30	M.	$\bigcirc 0.21$	-0.746	. 096	. 5	-0.001	I
Oct.	6, 1916..	019	P.	0.13	. 829	. 103	. 6	. 009	9 Sm .
Oct.	7, 1916...	028	Ma.	0.12	. 838	. 095	. 5	. 001	1 Be
Oct.	8, 1916.	00	M.	0.11	. 847	. 082	. 8	+0.012	2 Sm .
June	8, 1918...	-0 7	D.	+5.97	$+0.875$. 044	1.0	+0.007	7 Sm .
July	7, 1918..	046	P.	6.26	. 536	. 054	1.0	-0.007	Sm.

Normal Equations:

$$
\begin{gathered}
+8.7000 c+2.7210 \mu-0.6485 \pi=+0.8123 . \\
+1.00 .306 \mathrm{I}+\mathrm{I} 3.104 \mathrm{I}=-0.509 \mathrm{I} . \\
+5.5508=-0.148 \mathrm{I} . \\
c=+0^{\prime \prime} .096 . \\
\mu=-0^{\prime \prime} .038 \pm 0^{\prime \prime} .003 . \\
\pi=+0^{\prime \prime} .018 \pm 0^{\prime \prime} .012 .
\end{gathered}
$$

Solution:
p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .024$.

Comparison Stars.

| | | | Y. | Dependence. | Diameter. |
| ---: | ---: | ---: | ---: | ---: | ---: |\quad B. D. No.

No. 44. B.D. $+45^{\circ} \cdot 3558$. 7 I g Cygni. ($2 \mathrm{I}^{\mathrm{h}} 25^{\mathrm{m}} .8 ;+46^{\circ} 6^{\prime}$.)
Mag. 5.35. $\mu=-0^{\text {s.00044; }}+\mathrm{o}^{\prime \prime}$.ro4. Spectrum K.
The measures were in right ascension. Other published parallaxes are:

Abetti, (Transits), $+\mathrm{o}^{\prime \prime} .056 \pm \mathrm{o}^{\prime \prime} .043$.
Schlesinger, (Photographic), $+\mathrm{o}^{\prime \prime} .040 \pm \mathrm{o}^{\prime \prime} .043$.
Adams, (Spectroscopic), $+\mathrm{o}^{\prime \prime} .014$.

	Date.	Hour Angle. h. m.	Obs.	Time in roo Days, T.	Parallax Factor, P.	Solution, m.	Wt., p.	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by } \end{aligned}$
Sept	22, 1914.	-0 29	M.	-2.67	-0.6I	-0.150	. 8	-0.003	S.
Nov	2, 1914	+o 6	P.	2.26	. 93	. 155	. 8	+0.002	S.
Jun	22, 1915.	05	M.	+0.06	+0.72	. 135	8.	-0.001	S.
Jun	24, 1915.	- 2	M.	0.08	. 70	. 125	1.0	. 011	S.
June	28, 1915.	-	Ma.	0.12	. 66	.138	. 9	+0.002	S.
July	5, 1915..	04	Ma.	0.19	. 56	. 147	. 8	. 011	S.
July	6, 1915...	0 O	M.	0.20	. 55	. 135	1.0	-0.001	S.
July	8, 1915...	- 3	M.	0.22	. 52	. 135	. 9	. 001	S.
Sep	10, 1915...	-0 18	S.	+0.86	-0.41	. 142	. 7	+0.003	3 S.
Nov	17, 1915.		P.	1.54	. 94	. 138	. 8	-0.002	S.
Nov	27, 1915..	+o 19	M	I. 6	. 92	8	. 6	. 001	S.

Normal Equations:

$$
\begin{aligned}
+9.100 c-0.340 \mu+0.513 \pi & =-\mathrm{I} .268 \\
+\mathrm{I} 3.953+\mathrm{I.1} 34 & =+\mathrm{o} .102 \\
+4.415 & =-0.042
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .140 . \\
& \mu=+\mathrm{o}^{\prime \prime} .016 \pm \mathrm{o}^{\prime \prime} .005 \\
& \pi=+\mathrm{o}^{\prime \prime} .027 \pm \mathrm{o}^{\prime \prime} .008
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{oI} 8$.

Comparison Stars.					
No.	x	Y.	Dependence.	Diameter.	B. D. No.
3	-55.2	-139.2	+0.223	0.54	$+46^{\circ} .3331$
4	I27.1	83.0	.391	0.55	$+46^{\circ} .3325$
10	+182.2	+222.2	.386	0.48	$+45^{\circ} .3567$
π	8.2	22.1		0.89	$+45^{\circ} .3558$

No. 45. B.D. $+45^{\circ} \cdot 3562$. ($2 \mathrm{I}^{\mathrm{h}} 26^{\mathrm{m}} \cdot \mathrm{I}+46^{\circ} 7^{\prime} \cdot 2$.) Mag. 9.5.
The measures were in right ascension. No other parallax has been published.

	Hour		Time in	Parallax			
Date.	Angle.	Obs.	Ioo Days, Factor,	Solution,	Wt.,	Res., Meas-	
	h. m.		T.	P.	m.	p.	v.
				ured by.			

$\begin{array}{lrrlrrrrrr}\text { Sept. 22, 1914... } & -0 & 29 & \text { M. } & -2.66 & -0.61 & -0.146 & .7 & +0.008 & \text { S. } \\ \text { Nov. 2, 1914... to } & 6 & \text { P. } & 2.25 & .93 & .130 & .8 & -0.007 & \text { S. }\end{array}$
June 22, 1915... to $5 \mathrm{M} .+0.07+0.72 \quad .137 \quad .8+0.002 \mathrm{~S}$.
June 28, 1915... -0 I Ma. 0.13 . 66 .I30 1.0 -0.005 S.
July 5, 1915... $0 \quad 4 \mathrm{Ma}$. $0.20 \quad .56 \quad .133 \quad 1.0 \quad .002 \mathrm{~S}$.
July 6, 1915... $0 \quad 0 \quad$ M. $0.21 \quad .55 \quad .135 \quad .9 \quad 0.000 \quad$ S.
July 8, 1915... $-0 \quad 3$ M. $0.23 \quad .52 \quad .134$ 1.0 $-0.001 \quad$ S.
Sept. 1о, 1915... -0 I8 S. $+0.87-0.41 \quad .123 \quad .8-0.008$ S.
Nov. 17, 1915... 0 0 P. 1.55 . $94 \quad .132 \quad .7$ +0.002 S.
Nov. 27, 1915... +o 19 M. 1.65 . 92 . 137 . 6 .007 S.
Normal Equations:

$$
\begin{aligned}
+8.300 c-0.086 \mu+0.102 \pi & =-\mathrm{I.111} \\
+13.077+1.055 & =+0.034 \\
+3.920 & =-0.017
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .134 . \\
& \mu=+\mathrm{o}^{\prime \prime} .009 \pm \mathrm{o}^{\prime \prime} .005 . \\
& \pi=-\mathrm{o}^{\prime \prime} .006 \pm \mathrm{o}^{\prime \prime} .009 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime}$.oI 7 .

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
4	- I 57.6	-209.9	+0.756	0.55	$+46^{\circ} .3325$
8	24.8	+65.7	-0.636	0.50	
9	+30.6	48.9	+0.072	0.42	$+45^{\circ} .3563$
IO	I5I.7	95.3	.808	0.48	$+45^{\circ} .3567$
π	21.3	-120.1		0.54	$+45^{\circ} .3562$

No. 46. B.D. $+45^{\circ} \cdot 3566$. ($2 \mathrm{I}^{\mathrm{h}} 26^{\mathrm{m}} .8$; $\left.+46^{\circ} 5^{\prime} \cdot 7.\right) \quad$ Mag. 8.2.
The measures are in right ascension. No other parallax has been published.

	Date.	Hour Angle. h. m.	Obs.	$\begin{gathered} \text { Time in } \\ \text { roo Days, } \\ T . \end{gathered}$	Parallax Factor, P.	Solution, m.	Wt,, p,	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Se	22, 1914	-0 29	M.	-2.65	-0.61 ${ }^{\text {- }}$	+0.132	. 8	$+0.006$	6 S.
Nov	2, 1914.	to 6	P.	2.24	. 92	. 144	. 7	-0.005	5 S.
Jun	22, 1915.	to 5	M.	+0.08	+0.72	. 145	. 8	-0.002	2
Jun	24, 1915...	02	M.	0.10	. 70	. 146	1.0	. 003	3 S.
Jun	28, 1915..	-0	Ma.	0.14	. 66	. 158	. 8	. 015	5 S.
July	5, 1915...	04	Ma .	0.21	. 56	. 131	. 8	+0.012	2 S .
July	8, 1915...	- 3	M.	0.24	. 52	. 137	. 9	. 006	6 S.
Sep	10, 1915...	-0 18	S.	+0.88	-0.41	. 142	. 8	+0.003	3 S.
Nov	17, 1915...	0	P.	1.56	. 94	. 139	. 8	. 007	7 S.
Nov	27, 1915...	+o 19	M.	1.66	. 92	. 158	. 5	-0.012	2 S .

Normal Equations:

$$
\begin{aligned}
+7.900 c-0.246 \mu+0.048 \pi & =+1.127 \\
+13.192+0.907 & =-0.009 \\
+3.902 & =+0.010
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .143 . \\
& \mu=+\mathrm{o}^{\prime \prime} .009 \pm \mathrm{o}^{\prime \prime} .007 . \\
& \pi=+\mathrm{o}^{\prime \prime} .002 \pm \mathrm{o}^{\prime \prime} .014 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .027$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
I	+112.5	+135.4	+0.323	0.54	$+46^{\circ} .3565$
3	-92.7	-184.4	1.259	0.54	+46 ${ }^{\circ}$. 333 I
4	164.5	128.1	-0.885	0.55	+46 ${ }^{\circ} .3325$
10	+144.8	+177.1	+0.303	0.48	+ $45^{\circ} .3567$
π	109.3	-21.1		1.00	$+45^{\circ} .3566$

No. 47. B.D. $+29^{\circ}$.4550. Lalande 42883-5. $\quad\left(2 \mathrm{I}^{\mathrm{h}} 54^{\mathrm{m}} \cdot 2\right.$; $+29^{\circ} 2 I^{\prime}$.) Mag. 7.3. $\mu=-0^{3} .0295$; - $0^{\prime \prime} .378$.
The measures are in right ascension. Other published parallaxes are:

$$
\begin{array}{ll}
\text { Flint, } & +o^{\prime \prime} .080 \pm 0^{\prime \prime} .027 \\
\text { Gill, } & +o^{\prime \prime} .274 \pm 0^{\prime \prime} .017 \\
\text { Elkin, } & +o^{\prime \prime} .124 \pm 0^{\prime \prime} 019 \\
\text { Chase, } & +o^{\prime \prime} .020 \pm 0^{\prime \prime} .043 . \\
\text { Adams, } & +o^{\prime \prime} .066 .
\end{array}
$$

	Date.	Hour Angle. h. m.	Obs.	$\begin{gathered} \text { Time in } \\ \text { Io0 Days, } \\ T . \end{gathered}$	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \mathrm{W}, \text {, } \\ & p, \end{aligned}$	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Oct.	II, 1915	-0 23	P.	-3.20	-0.74	+0.021	7	-0.004	4 Sm.
Oct.	21, 1915...	+o 2	M.	3.10	. 82	. 016	. 8	. 002	2 Sm .
Oct.	30, 1915...	017	Ma.	3.01	. 87	. 016	i. 0	. 003	3 Sm .
June	30, 1916..	02	Ma.	-5.57	+0.70	-0.017	. 7	-0.008	8 Sm.
July	7, 1916...	+o 18	Ma.	0.50	. 62	. 035	. 8	+0.009	Sm.
July	II, 1916...	048	M.	0.46	. 57	. 028	. 9	0.000	Sm.
July	28, 1916...		Ma.	0.29	. 34	. 044	. 6	$+0.011$	Sm.
Oct.	7, 1916...	+o 16	Ma.	+0.42	-0.70	-0.046	. 6	-0.008	Sm.
Oct.	26, 1916..	052	M.	0.61	. 86	. 066	. 8	+0.007	Sm.
Nov.	2, 1916...	030	M.	0.68	. 90	. 065	. 8	. 004	4 Sm.
June	25, 1917...	-0 9	M.	+3.03	+0.75	-0.100	. 7	+0.005	Sm.
June	30, 1917...	052	P.	3.08	. 71	. 084	. 8	-0.013	Sm.
July	27, 1917...	to 8	Ma.	3.35	. 35	. 103	. 5	. 001	Sm.

Normal Equations:

$$
\begin{aligned}
+9.7000 c-1.5730 \mu-0.9010 \pi & =-0.3691 \\
+44.9849+8.3282 & =-0.7656 \\
+5.0824 & =-0.0910 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .04 \mathrm{I} . \\
& \mu=-\mathrm{o}^{\prime \prime} .093 \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=+\mathrm{o}^{\prime \prime} .034 \pm \mathrm{o}^{\prime \prime} .01 \mathrm{II} .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{o2I}$.

Comparison Stars.

No.	X.	Y.	Dependence.	Diameter.	B. D. No.
2	-I 52.8	-74.0	+0.344	0.53	
3	140.0	+123.2	.204	0.37	
6	+142.2	140.0	.155	0.74	$+29^{\circ} .4558$
9	198.8	-72.8	.297	0.49	
π	0.0	0.0		0.70	$+29^{\circ} .4550$

No. 48. B.D. $+69^{\circ} \cdot 1228$. $\Sigma 2883$. $\left(22^{\mathrm{h}} 8^{\mathrm{m}} \cdot 4 ;+69^{\circ} 38^{\prime}\right.$.) Mag. 5.54. $\mu=-0^{\text {s.010 }} \mathbf{0} ;+0^{\prime \prime} .018$. Spectrum F.

The measures are in right ascension. The brighter component only was measured. No other parallax has been published.

	Date.	Hour Angle. h. m.	Obs.	Time in 100 Days, T.	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \text { Wt,", } \\ & p, \end{aligned}$	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Nov.	9, 1915.	to 32	Ma.	-3.33	-0.91	-0.073	. 9	-0.006	6 Sm.
Nov.	21, 1915.		M.	3.21	. 92	. 075	1.0	. 005	5 Sm.
Nov.	26, 1915.	030	P.	3.16	. 93	. 087	. 9	+0.006	6 Sm.
June	30, 1916.	+o 19	Ma.	-0.99	+0.73	. 077	1.0	+0.003	Be.
July	7, 1916.	- 28	Ma.	0.92	. 67	. 077	. 6	. 002	Be. Sm.
Oct.	11, 1916...	-0 16	P.	+0.04	-0.70	. 113	. 5	+0.006	6 Be.
Nov.	7, 1916...	+o 19	M.	0.31	. 90	.117	I. 0	. 004	4 Sm
June	30, 1917...	-0 29	P.	+2.66	+0.73	. 114	. 6	+0.007	Sm.
June	30, 1917...	017	P.	2.66	. 73	. 101	. 9	-0.006	6 Sm.
July	30, 1917...	- 58	P.	2.96	. 36	.II3	. 9	. 003	Sm.
July	30, 1917...	044	P.	2.96	. 36	.114	7	. 002	Sm.

Normal Equations:

$$
\begin{aligned}
+9.0000 c-1.5370 \mu-1.0230 \pi & =-0.8565 . \\
+55.4880+11.5575 & =-0.1738 . \\
+5.2340 & =+0.0777 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=-\mathrm{o}^{\prime \prime} .095 . \\
& \mu=-\mathrm{o}^{\prime \prime} .043 \pm \mathrm{o}^{\prime \prime} .003 . \\
& \pi=+\mathrm{o}^{\prime \prime} .078 \pm \mathrm{o}^{\prime \prime} .010 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} . \mathrm{or} 6$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
I	+I 78.0	+91.2	+0.262	0.64	$+69^{\circ} .1231$
6	114.0	-182.4	.277	0.77	$+69^{\circ} .1230$
10	-104.8	+37.6	.239	0.62	$+69^{\circ} .1227$
12	238.4	81.2	.222	0.86	$+69^{\circ} .1219$
π	0.0	0.0		0.64	$+69^{\circ} .1228$

No. 49. B.D. $+29^{\circ} .474$ I. η Pegasi. $\quad\left(22^{\mathrm{h}} 38^{\mathrm{m}} \cdot 3 ;+29^{\circ} 4^{\prime}\right.$.) Mag. 3.10. $\mu=+0^{\text {s. }} .0008 ;-0^{\prime \prime} .035$. Spectrum G.
The measures are in longitude. This star is a spectroscopic binary. Other published parallaxes are:

$$
\begin{array}{ll}
\text { Flint, } & -0^{\prime \prime} .037 \pm 0^{\prime \prime} .027 \\
\text { Schlesinger, } & -0^{\prime \prime} .002 \pm 0^{\prime \prime} .013 \\
\text { Adams, } & +0^{\prime \prime} .042
\end{array}
$$

Hour		Time in Parallax			
Angle.	Obs.	roo Days, Factor,	Solution,	$\mathrm{Wt},$,	Res., Meas-
h. m.	T.	P.	m.	p,	v.

Oct. 25, 1915.. to 5 P. $-3.44-0.598+0.187$. 50.000 Sm .
Dec. I, 1915... 022 P. 3.07 . 949 . 192 1.0 -0.004 Be .
Dec. 14, 1915... 0 54 M. 2.94 . 983 . 844 1.0 +0.004 Be.

Aug. 6, 1916... $-1 \quad 0 \quad$ M. $-0.58+0.651 \quad .202 \quad 1.0-0.012 \quad \begin{gathered}\mathrm{Be} \\ \mathrm{Sm}\end{gathered}$
Aug. 13, 1916... +024 P. 0.51 . 555 . 844 . 8 +0.006 Be.
Aug. 15, 1916... 029 P. 0.49 . 524 .178 . 8 . 012 Sm.

Dec. 17, 1916... I II M. 0.75 .984 . 186 1.0 007 Be.
Dec. 19, 1916... I II M. 0.77 . 982 . 202 . $9-0.009 \mathrm{Sm}$.
July $30,1917 \ldots-035$ P. $+3.00+0.740$. 199 . $6-0.005 \mathrm{Sm}$.
Aug. 5, 1917... 042 P. 3.06 . 666 . 188 . 9 to.006 Sm.
Aug. 10, 1917... I 21 P. 3.11 . 599 . 201 . $5-0.007$ Sm.

Normal Equations:

$$
\begin{aligned}
+9.8000 c-1.2780 \mu-1.856 \mathrm{I} \pi & =+\mathrm{I} .8708 \\
+44.5793+8.4866 & =-0.1926 . \\
& =6.1507
\end{aligned}=-0.3488 .
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .19 \mathrm{I} \\
& \mu=+\mathrm{o}^{\prime \prime} .006 \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=-\mathrm{o}^{\prime \prime} .004 \pm \mathrm{o}^{\prime \prime} .012 .
\end{aligned}
$$

p. e. unit weight, $\pm \mathrm{o}^{\prime \prime} .024$.

Comparison Stars.

No.	X	Y.	Dependence.	Diameter.	B. D. No.
2	+188.4	+25.2	+0.359	0.63	
6	-231.2	186.8	.207	0.59	
11	244.4	-61.6	.157	0.48	
22	+65.6	139.2	.277	0.39	
π	0.0	0.0		1.10	$+29^{\circ} .4741$

No. 50. B.D. $+19^{\circ}$.5094. $\Sigma 3007$. $\quad\left(23^{\mathrm{h}} \mathrm{I} 7^{\mathrm{m}} .8 ;+20^{\circ} \quad \mathrm{I}^{\prime}\right.$.)
Mag. 6.9. $\mu=+0^{3} .0226 ;-0^{\prime \prime} .019$.
$\Sigma 3007$ is a double star, whose components have a common proper motion. The brighter component only was measured. The measures are in longitude. No other parallaxes have been published for this star.

Date.	Hour Angle. h. m.	Obs.	Time in T.	Parallax Factor, P.	Solution, m.	$\begin{aligned} & \mathrm{W}, \text {, } \\ & p, \end{aligned}$	Res., v.	$\begin{aligned} & \text { Meas- } \\ & \text { ured by. } \end{aligned}$
Nov. 26, 1915.	+o 54	P.	-3.42	-0.894	$+0.048$. 5	$+0.002$	Sm.
Dec. 26, 1915...	138	M.	3.12	. 979	. 059	. 6	-0.006	6 Be .
Aug. 13, 1916.	+022	P.	-0.81	+0.615.	. 114	. 9	-0.004	4. $\begin{aligned} & \mathrm{Be} \\ & \mathrm{Sm} \text {. }\end{aligned}$
Aug. 17, 1916...	037	P.	0.77	. 558	. 108	. 5	+0.002	Be .
Aug. 19, 1916...	013	P.	0.75	. 530	. 104	. 7	. 005	5 Sm .
Nov. 8, 1916.	to 4	P.	+0.06	-0.731	. 093	. 8	+0.012	$2 \begin{aligned} & \mathrm{Be} . \\ & \mathrm{Sm} .\end{aligned}$
Dec. 10, 1916.	051	M.	0.38	. 970	$\begin{aligned} & .116 \\ & .116 \end{aligned}$. 7	-0.009	(Be .
Aug. 5, 1917...	-0 38	P.	+2.76	+0.721	.169	. 9	-0.003	3 Be .
Aug. 10, 1917...	05	Ma.	2.81	. 668	. 160	. 6	$+0.006$	6 Sm .
Aug. 11, 1917...	to 10	M.	2.82	. 644	. 168	1.0	-0.002	2 Sm.

Normal Equations:

$$
\begin{aligned}
+7.2000 c+2.0830 \mu+0.5990 \pi & =+0.8605 \\
+32.6194+6.8602 & =+0.8268 \\
+3.9039 & =+0.2245
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \mathrm{c}=+\mathrm{o}^{\prime \prime} .114 . \\
& \mu=+\mathrm{o}^{\prime \prime} .072 \pm \mathrm{o}^{\prime \prime} .004 . \\
& \pi=+\mathrm{o}^{\prime \prime} .06 \mathrm{I} \pm \mathrm{o}^{\prime \prime} .012 .
\end{aligned}
$$

p. e. unit weight $\pm \mathrm{o}^{\prime \prime}$.oI9.

Comparison Stars.

| | | | Y. | Dependence. | Diameter. |
| ---: | ---: | ---: | ---: | ---: | ---: |\quad B. D. No.

言

 คั $1++++++t+t+++++1++11+t+++$

¢1 $1+++++$	+ + + + + + + +	$+1++11+$

Relative
 $1+++1++++1++++++++++1++1+++1+$

いくひひば び山 エ゙メ
（6）\＆゙ッ
的庖

[^0]: PROC. AMER. PHIL. SOC., VOL. LIX, G, MARCH 30, I920.

